Blade of the Immortal | 2 Broke Girls | Nhạc Việt Nam

DISEÑO MECÁNICO (Ingeniería Industrial)


Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "DISEÑO MECÁNICO (Ingeniería Industrial)"

Transcripción

1 Una pieza metálica de peso W=50 N y forma de paralepípedo está suspendida de un soporte rígido S mediante una articulación A, como se aprecia en el croquis (sin escala) de la figura. Para mantener la pieza con su eje longitudinal en posición horizontal (según la figura) se debe montar un resorte de torsión helicoidal unido al soporte por un bulón de Ø20 mm en O. Entre el bulón y el resorte hay una holgura radial de 1 mm. El resorte será de hilo circular de acero de R E =750 MPa y de Ø3 mm formando sus extremos un ángulo de 180º en estado libre y cerrando espiras con el incremento de carga. Determinar el número de espiras requerido. ( 1,5 puntos) Establecer la calidad que debería tener el acero del resorte para asegurar un coeficiente de seguridad s=1,75. ( 1 punto)

2 FORMULARIO DE MUELLES DE TORSIÓN HILO DE SECCIÓN CIRCULAR MAGNITUD Límite elástico del material (a tracción) Módulo de elasticidad (YOUNG) Coeficiente de seguridad R E E s VALOR Tensión de flexión admisible σ ADM R E s Diámetro medio de espira D Diámetro de hilo d Diámetro interior de espira D INT D - d Índice de curvatura C D d Nº de espiras útiles N Rigidez = Constante del muelle k M d E = Δα 3888DN Flexibilidad f 1 k Carga axial F Distancia normal carga-eje x Par aplicado M Fx Deformación angular bajo carga F (º) Δα 3888FxDN d E Diámetro interior de espira bajo carga F D INT N D (signo + cerrando espiras) INT N ± Δα 360 Factor de corrección de tensión (signo + cerrando espiras) K C C(C ± 1) 1 C(C ± 1) Tensión máxima del muelle σ MAX 10,8FxK C 3 d Constante de tensión k σ σ MAX EK = C Δα 360NC 2 πd Masa aprox. del muelle (δ = densidad) m δ ( πdn + LEXTREMOS )

3 Para equilibrar la pieza se requiere aplicar un momento mediante una fuerza F, generada por el resorte. Del equilibrio de momentos en la articulación, conociendo que W = 50 N, resulta: F120 = W30 F= 12,5N. Luego el par que debe generar el resorte: M= F 150= 1,875Nm. Como la deformación para esta carga, con la pieza en horizontal, es de 90º (según la figura), se obtiene la rigidez angular necesaria: M 1,875 k = = = 0,020833Nm /º. α 90 El resorte se monta en un bulón de 20 mm. de diámetro, con una holgura radial de 1 mm., luego su diámetro interior será: DINT = = 22mm. Al ser el diámetro de la espira d = 3 mm., el diámetro medio será: D= DINT + d= 22+ 3= 25mm. Conocidos el diámetro medio, el diámetro de la espira, el modulo de elasticidad (E = MPa.) y la rigidez angular, se obtiene el número de espiras del resorte: 3 11 d E d E (3 10 ) 2 10 k = N = = = 8 espiras D N 3888 D k , Conocido el índice de curvatura se puede calcular el factor de corrección de tensión: D 25 C ( C+ 1) 1 8,33 ( 8,33+ 1) 1 C= = = 8,33 KC = = = 0,916 d 3 C (C + 1) 8,33 (8,33 + 1) Y la tensión máxima que alcanzaría el resorte con la pieza en equilibrio, con el momento calculado M = 1,875 Nm, sería: 10,8 M 10,8 1,875 σ MAX = K 3 C σ MAX = 0,916 = 687,3 MPa. 3 3 d (3 10 ) Con el límite elástico a tracción del acero inicial (R E = 750 MPa) no se asegura el coeficiente de seguridad solicitado: R 750 σ 687,3 E s= = = 1,09 < 1,75 MAX Para asegurar que el coeficiente de seguridad sea mayor del establecido se debe cumplir que: R E s = 1, 75 R E 1, 75 σmax R E 1202,8 MPa. σmax

4 Una máquina para bobinar pequeños solenoides con hilo esmaltado de cobre de Ø 0,1 mm dispone de un tensor formado por un resorte helicoidal y una polea de guía en su extremo libre, según la figura, para mantener la tracción del hilo entre valores adecuados y así evitar roturas de éste y defectos en el bobinado. La tracción del hilo debe permanecer con valores de 0,17 N ±20%, en correspondencia con la posición de la polea-guía del tensor, entre +18º y -18º con la horizontal (extremos a 90º). El hilo del resorte es de acero de 980 MPa de límite elástico, con diámetro de Ø1 mm y está montado sobre un pivote de Ø18 mm. SE PIDE: 1.- Determinar la rigidez angular que requiere el resorte 2.- Obtener la forma y dimensiones del resorte sin carga y las espiras que debe tener. 3.- Calcular la reacción sobre el tope Z y la tensión máxima que alcanza el resorte con la máxima tracción del hilo. NOTA: Se pueden despreciar las deformaciones de los extremos.

5 SOLUCIÓN: 1.- Las tracciones del hilo de cobre T producen una carga sobre el eje de la polea: 55º F = 2T cos = 1,77T N 2 Los valores de la tracción del hilo están comprendidos entre: T MIN = 0,8.0,17=0,136 N y T MAX = 1,2.0,17=0,20 N y las cargas correspondientes: F MIN = 0,21 N y F MAX = 0,362 N Esta variación de carga: ΔF= F MAX - F MIN =0,121N produce una variación de momento torsor: ΔM=x.ΔF=128.0,121=15,7 N.mm que debe corresponder con la variación del ángulo de deformación: Δα= 2.18º=36º ΔM 15,7 por lo que la rigidez angular resultante es: kα = = = 0,3 N.mm/º Δα La figura corresponde a la posición con carga media: F MED =1,77.0,17= 0,302 N y el momento: M MED =128.0,302= 38,65 Nmm M y su deformación será: α MED = MED 38,65 = = 90º lo cual supone que los extremos k α 0, 3 sin carga forman un ángulo de 180º, esto es, están alineados. El diámetro interior del resorte debe ser al menos de 19 mm, dejando 1 mm de holgura con el eje-soporte. Así, el diámetro medio es: D=19+1=20mm. Conocida la rigidez se obtiene el nº de espiras: d E N = con d= 1mm E=200GPa D=20mm y k=0,3 Nmm/º 3888Dk resulta: N=6,0 espiras 3.- El momento torsor con la máxima tracción del hilo corresponde a la deformación máxima, esto es: M MAX =0,3.(90º+18º)=6, Nmm y la reacción en el tope: M R Z = MAX = 1,16 N 0mm La máxima tensión se corresponde con la carga máxima: La curvatura es C=D/d=20 y el factor corrector, cerrando espiras según la figura, es: C(C + 1) 1 10,8MKC K C = = 0,96 y la tensión máxima: σmax = = 83 MPa 3 C(C + 1) d que se sitúa al 50% aprox. del limite elástico, equivalente a s=2.

6 Un resorte de torsión de existencia comercial está fabricado con alambre de acero de 1, mm, tiene 6 espiras y extremos rectos de 50 mm de largo y 180º de separación. El diámetro exterior es de 15 mm. El resorte ha de ser empleado en una aplicación en la que el momento de torsión en la situación de reposo es un 20% del máximo. (2 puntos) Se pide: 1. El valor del momento torsor que originaría una tensión máxima igual a la tensión admisible del material 2. Si el momento de torsión obtenido en el apartado 1 se usa como momento torsionante de operación máximo cuál sería el valor mínimo del diámetro interior? 3. Angulo de deformación correspondiente a la situación de reposo.. Realizar el esquema CARGA-DEFORMACIÓN del muelle indicando los puntos más significativos con sus valores correspondientes. Datos: Limite elástico del material 880 N/mm 2 Coeficiente de seguridad 1,65

7 SOLUCIÓN: d = 1, mm D EXT = 15 mm. N = 6 espiras M reposo =0,2 M máximo x = 50 mm R E = 880 N/mm 2 α =180º separación extremos (muelle libre) s = 1,65 1. El valor del momento torsor que originaría una tensión máxima igual a la tensión admisible del material R 880 σ E ADM = = = 533, 33 N/mm 2 s ,8MK C σ MAX d σ ADM = σ MAX = M = 3 d 10,8K C D C = = = 9.7 Kc = 0,928 d ,33 1. M = = 15,92Nmm 10, Si el momento de torsión obtenido en el apartado 1 se usa como momento torsionante de operación máximo, valor mínimo del diámetro interior DINT N 12,2 6 DINT ʹ = = Dʹ INT = 11,9 mm Δα 60,3 N d E 1, 2 10 k = = = 0,002 Nm/º 3888DN ,6 6 M= k Δα Δα = M max / k = 0,15 / 0,002 = 60,3 º 3. Angulo de deformación correspondiente a la situación de reposo. M= k Δα M reposo =0,2 M máximo Δα reposo = 0,2 Δα máximo Δα reposo = 0,2 60,3 Δα reposo = 12,06º. Esquema CARGA-DEFORMACIÓN del muelle. PAR (Nm) 0,160 0,10 0,15 0,120 0,100 0,080 0,060 0,00 0,03 0,020 0,000 0, DEFORMACION ANGULAR (º) Posición Deformac. Δα (º) Momento M (Nm) Tensión (N/mm 2 ) Libre Montaje 12,79 0, ,10 Máximo 63,96 0, ,33

8 En fisioterapia de rehabilitación se utilizan puños elásticos de resorte para la potenciación de la musculatura de los dedos y manos. La figura sin escala representa un prediseño de un modelo en reposo, con el que se debe alcanzar una carga lineal de 1,32 kn/m sobre toda la empuñadura en su deflexión máxima (en líneas de puntos). El resorte cilíndrico-helicoidal de torsión tiene sus extremos insertados en las empuñaduras y debe ser de hilo de acero F-110 (R E =1100 MPa) con un diámetro 3<d<7mm, siendo d un número entero. SE PIDE: 1.- Determinar las dimensiones del resorte. 2.- Obtener el coeficiente de seguridad mínimo durante su utilización.

9 SOLUCIÓN 1.- La carga lineal máxima sobre la empuñadura y su correspondiente deflexión nos permiten obtener la rigidez angular necesaria: Carga sobre la empuñadura: F = 1,32 kn/m. 100 mm = 132 N en dirección normal. Par máximo aplicado: M = 132 N. 100 mm = 13,2 Nm Deflexión máxima del resorte: α = 2.20º = 0º Rigidez angular requerida: k = M/α = 0,33 Nm/º d E La expresión de la rigidez es: k = y siendo el diámetro exterior 65 mm 3888DN como máximo, admitimos 6 mm y resulta D=6 d. Los valores posibles para d son, 5 y 6 mm, y los correspondientes de N, con E= MPa aparecen el la tabla, junto con la curvatura C, el factor de corrección K C cerrando espiras y la tensión máxima que permitirá decidir la solución adecuada: d 5 6 mm N 0,67 1,65 3,9 esp. C 15 11,8 9,67 K C 0,952 0,90 0,927 σ MAX MPa La única solución válida es HILO DE 6 mm y DIÁMETRO EXTERIOR DE 6 mm ya que con los otros hilos se obtienen tensiones inviables. El nº de espiras resulta N=3,5 espiras que se adapta a la forma del croquis, ya que debe ser un número entero mas 0,5 esp. 2.- Con la deflexión máxima, la carga y la tensión son máximas y en esta situación el coeficiente de seguridad, con relación al límite elástico es mínimo: s = 1100 / 612 = 1,8 que se considera adecuado ya que la carga está limitada por la geometría, cuando las empuñaduras hacen tope.

10 Un dispositivo de telemando de un puente-grúa dispone de una palanca para realizar las operaciones de SUBIR-PARO-BAJAR las cargas, adoptando inclinaciones de +30º, 0º y -30º respectivamente. La posición central es estable y se consigue por la acción de dos muelles helicoidales de torsión iguales, montados lateralmente a la palanca, en posición simétrica y sobre el eje de giro de la palanca. La máxima fuerza F de desplazamiento a realizar, normal a la palanca, debe ser 2 N, aplicada en la empuñadura y a 90 mm del centro del eje SE PIDE: 1.- Determinar la rigidez angular de los resortes y representar la carga F en función del ángulo de inclinación. 2.- Dibujar la característica de un resorte aislado, indicando la carga y deformación en cada posición 3.- Obtener el nº de espiras que debe tener cada resorte, sabiendo que el hilo es de acero de Ø1,5 mm y el diámetro del eje de giro es Ø9 mm:

11 SOLUCIÓN 1.- Para un ángulo de inclinación α obtenemos: Siendo F 1 y F 2 las acciones de los muelles sobre la palanca, k la rigidez angular de cada uno y M O el par ejercido en 0 : yf 1 = M O +αk yf 2 = M O -αk Tomando momentos en O: Fx+yF 2 =yf 1 y sustituyendo: Fx=2Kα de donde: Fx k = y siendo: 2 α F=2N a=30º x=90 mm se obtiene: k=3 Nmm/º El valor de F en función de α resulta: 2kα α F = = N x La característica de cada resorte es: M=kα : 3.- De la expresión de la rigidez angular obtenemos: d E N = y siendo: 3888Dk d=1,5mm E= N/mm 2 k=3 Nmm/º D=9+1+d=11,5 mm resulta: N=7,55 espiras

RESORTES: è A FLEXIÓN

RESORTES: è A FLEXIÓN Departamento de Ingeniería Mecánica RESORTES: è A FLEXIÓN è A TORSIÓN Diseño Mecánico 4º curso de Ingeniería Industrial 1 RESORTES: USOS Y FUNCIONES o Para almacenar y retornar energía, como el mecanismo

Más detalles

Examen de TECNOLOGIA DE MAQUINAS Febrero 96 Nombre...

Examen de TECNOLOGIA DE MAQUINAS Febrero 96 Nombre... Examen de TECNOLOGIA DE MAQUINAS Febrero 96 Nombre... Xerardiño es un niño de cuatro años que vive con sus padres en una casa con jardín. Aunque ya ha empezado a ir al colegio, se aburre mucho cuando está

Más detalles

FUNCIONES. Proporcionan flexibilidad y aíslan de choques y vibraciones Absorben, acumulan y liberan energía

FUNCIONES. Proporcionan flexibilidad y aíslan de choques y vibraciones Absorben, acumulan y liberan energía RESORTES. ÍNDICE Características unciones Clasificación Propiedades elásticas Esfuerzos en resortes helicoidales Deformación en resortes helicoidales Resortes helicoidales de compresión Resortes helicoidales

Más detalles

II. Resortes Mecánicos

II. Resortes Mecánicos Objetivo: 1.Definir que es un resorte y resaltar algunas de sus aplicaciones típicas. 2.Hacer el análisis de esfuerzo y deformación para resortes helicoidales sujetos a compresión. 3.Reconocer los tipos

Más detalles

SISTEMAS MECÁNICOS Septiembre 2001

SISTEMAS MECÁNICOS Septiembre 2001 SISTEMAS MECÁNICOS Septiembre 2001 Dos resortes helicoidales de compresión, ambos de hilo del mismo acero y diámetro del alambre d=1,5 cm y 7 espiras cada uno, escuadradas y rectificadas, tiene la misma

Más detalles

MECANICA DE MEDIOS CONTINUOS 2º INGENIERO GEOLOGO

MECANICA DE MEDIOS CONTINUOS 2º INGENIERO GEOLOGO 1.- La chapa rectangular ABCD de la Figura 1 está anclada en el punto A y colgada de la cuerda SC. Determinar la tensión de la cuerda y la fuerza en el punto de anclaje A cuando la chapa soporta una carga

Más detalles

R E S O R T E S. Según la forma del resorte: helicoidal cilíndrico, helicoidal cónico, en espiral, laminar.

R E S O R T E S. Según la forma del resorte: helicoidal cilíndrico, helicoidal cónico, en espiral, laminar. R E S O R T E S INTRODUCCION os resortes son componentes mecánicos que se caracterizan por absorber deformaciones considerables bajo la acción de una fuerza exterior, volviendo a recuperar su forma inicial

Más detalles

Escuela Superior Tepeji del Río

Escuela Superior Tepeji del Río Escuela Superior Tepeji del Río Área Académica: Ingenieria Industrial Asignatura: Resistencia de los Materiales Profesor(a):Miguel Ángel Hernández Garduño Periodo: Julio- Diciembre 2011 Asignatura: Resistencia

Más detalles

Mecánica. Ingeniería Civil. Curso 11/12

Mecánica. Ingeniería Civil. Curso 11/12 Mecánica. Ingeniería ivil. urso / ) eterminar la dirección θ del cable y la tensión F que se requiere para que la fuerza resultante sobre el bidón de la figura sea vertical hacia arriba de módulo 800 N.

Más detalles

TEORIA DE ESTRUCTURAS Ingeniería Geológica PROBLEMAS DE EXAMEN. Curso 2010/11. Elaborados por los profesores:

TEORIA DE ESTRUCTURAS Ingeniería Geológica PROBLEMAS DE EXAMEN. Curso 2010/11. Elaborados por los profesores: TEORIA DE ESTRUCTURAS Ingeniería Geológica PROBLEMAS DE EXAMEN Curso 2010/11 Elaborados por los profesores: Luis Bañón Blázquez (PCO) Fco. Borja Varona Moya (PCO) Salvador Esteve Verdú (ASO) PRÓLOGO La

Más detalles

ESPECIALIDADES : GUIA DE PROBLEMAS N 3

ESPECIALIDADES : GUIA DE PROBLEMAS N 3 ASIGNATURA : ESPECIALIDADES : Ing. CIVIL Ing. MECANICA Ing. ELECTROMECANICA Ing. ELECTRICA GUIA DE PROBLEMAS N 3 2015 1 GUIA DE PROBLEMAS N 3 PROBLEMA Nº1 Un carro de carga que tiene una masa de 12Mg es

Más detalles

DISEÑO DE ELEMENTOS DE MAQUINAS SERIE DE EJERCICIOS No.1 SEMESTRE 2009-2

DISEÑO DE ELEMENTOS DE MAQUINAS SERIE DE EJERCICIOS No.1 SEMESTRE 2009-2 DISEÑO DE ELEMENTOS DE MAQUINAS SERIE DE EJERCICIOS No.1 SEMESTRE 2009-2 1.- Para las secciones mostradas en la figura 1, determine la localización de su centroide y calcule la magnitud del momento de

Más detalles

PROBLEMAS RESUELTOS TEMA: 3

PROBLEMAS RESUELTOS TEMA: 3 PROBLEMAS RESUELTOS TEMA: 3 1. Una partícula de 3 kg se desplaza con una velocidad de cuando se encuentra en. Esta partícula se encuentra sometida a una fuerza que varia con la posición del modo indicado

Más detalles

RESORTES DE VOLUTA Y FLEJE

RESORTES DE VOLUTA Y FLEJE RESORTES DE TENSIÓN Los resortes de tensión o tracción son los que realizan un esfuerzo interno ya que se somete a la aplicación de dos fuerzas que actúan en sentido opuesto, y tienden a estirarlo. Se

Más detalles

INDICE 1. La Naturaleza del Diseño Mecánico 2. Materiales en el Diseño Mecánico 3. Análisis de Tensiones

INDICE 1. La Naturaleza del Diseño Mecánico 2. Materiales en el Diseño Mecánico 3. Análisis de Tensiones INDICE 1. La Naturaleza del Diseño Mecánico 1 1.1. Objetivos del capitulo 2 1.2. Ejemplos de diseño mecánico 4 1.3. Conocimientos necesarios para el diseño mecánico 7 1.4. Funciones y especificaciones

Más detalles

SISTEMA DE SUSPENSIÓN

SISTEMA DE SUSPENSIÓN SISTEMA DE SUSPENSIÓN 1. MISIÓN DE LA SUSPENSIÓN El sistema de suspensión de un automóvil se encarga de hacer más cómoda la marcha a los pasajeros, evitando que las oscilaciones del terreno se transmitan

Más detalles

Fundamentos de Diseño Estructural Parte I - Materiales. Argimiro Castillo Gandica

Fundamentos de Diseño Estructural Parte I - Materiales. Argimiro Castillo Gandica Fundamentos de Diseño Estructural Parte I - Materiales Argimiro Castillo Gandica Fundamentos básicos Formas de falla Por sobrecarga (resistencia insuficiente) Por deformación excesiva (rigidez insuficiente)

Más detalles

MAGNETISMO INDUCCIÓN ELECTROMAGNÉTICA FÍSICA II - 2011 GUÍA Nº4

MAGNETISMO INDUCCIÓN ELECTROMAGNÉTICA FÍSICA II - 2011 GUÍA Nº4 GUÍA Nº4 Problema Nº1: Un electrón entra con una rapidez v = 2.10 6 m/s en una zona de campo magnético uniforme de valor B = 15.10-4 T dirigido hacia afuera del papel, como se muestra en la figura: a)

Más detalles

Ascensor de pasajeros para viviendas de máximo 8 plantas Pág. 1. Resumen

Ascensor de pasajeros para viviendas de máximo 8 plantas Pág. 1. Resumen Ascensor de pasajeros para viviendas de máximo 8 plantas Pág. Resumen El presente volumen agrupa la primera parte de los anexos de los que consta el proyecto Ascensor de pasajeros para viviendas de cómo

Más detalles

CÁLCULO DE ELEMENTOS MÓVILES EN SOPORTES DE PLÁSTICO

CÁLCULO DE ELEMENTOS MÓVILES EN SOPORTES DE PLÁSTICO CÁLCULO DE ELEMENTOS MÓVILES EN SOPORTES DE PLÁSTICO Por Ernesto Avedillo El presente estudio tiene por objetivo realizar los cálculos necesarios para conocer los esfuerzos y deformaciones a los que se

Más detalles

Definición de los resortes o muelles. Resortes: definición, clasificación y representación normativa.

Definición de los resortes o muelles. Resortes: definición, clasificación y representación normativa. GUÍA DE TRABAJO Nº: 3 NOMBRE DEL PROGRAMA: ASIGNATURA: INGENIERÍA ELECTROMECÁNICA, TECNOLOGÍA ELECTROMECÁNICA. DIBUJO DE MAQUINAS. PERÍODO ACADÉMICO O SEMESTRE: CUARTO CRÉDITOS DE LA ASIGNATURA: ATURA:

Más detalles

ENSAYOS DESTRUCTIVOS EN LA SOLDADURA Segunda parte

ENSAYOS DESTRUCTIVOS EN LA SOLDADURA Segunda parte ENSAYOS DESTRUCTIVOS EN LA SOLDADURA Segunda parte ENSAYO DE TRACCIÓN El ensayo de tracción se realiza en una máquina universal, formada principalmente de una bancada robusta para darle mejor apoyo y más

Más detalles

11 Número de publicación: 2 212 868. 21 Número de solicitud: 200101577. 51 Int. Cl. 7 : A63B 29/02. 72 Inventor/es: Apezetxea Goñi, Mikel

11 Número de publicación: 2 212 868. 21 Número de solicitud: 200101577. 51 Int. Cl. 7 : A63B 29/02. 72 Inventor/es: Apezetxea Goñi, Mikel 19 OFICINA ESPAÑOLA DE PATENTES Y MARCAS ESPAÑA 11 Número de publicación: 2 212 868 21 Número de solicitud: 200101577 51 Int. Cl. 7 : A63B 29/02 12 SOLICITUD DE PATENTE A1 22 Fecha de presentación: 28.06.2001

Más detalles

Mediciones Eléctricas

Mediciones Eléctricas UNIVERSIDAD NACIONAL DEL CALLAO FACULTAD DE INGENIERIA ELECTRICA Y ELECTRONICA Mediciones Eléctricas Ing. Roberto Solís Farfán CIP 84663 APARATOS DE MEDIDA ANALOGICOS Esencialmente el principio de funcionamiento

Más detalles

Caja Castilla La Mancha CCM

Caja Castilla La Mancha CCM CCM Caja Castilla La Mancha .INTRODUCCION El hormigón armado es un material compuesto que surge de la unión de hormigón en masa con armadura de acero, con el fin de resolver el problema de la casi nula

Más detalles

CAPÍTULO 4: ENSAYOS DE VALIDACIÓN MECÁNICA (CAE)

CAPÍTULO 4: ENSAYOS DE VALIDACIÓN MECÁNICA (CAE) CAPÍTULO 4: ENSAYOS DE VALIDACIÓN MECÁNICA (CAE) Diseño, validación y fabricación de un aro protector para envases metálicos mediante el empleo de las tecnologías CAD/CAM/CAE y Rapid Prototyping. 4.1.

Más detalles

UNIVERSIDAD DE LOS ANDES ESCUELA DE MECÁNICA CÁTEDRA DE DISEÑO RESORTES MECÁNICOS

UNIVERSIDAD DE LOS ANDES ESCUELA DE MECÁNICA CÁTEDRA DE DISEÑO RESORTES MECÁNICOS UNIVERSIDAD DE LOS ANDES ESCUELA DE MECÁNICA CÁTEDRA DE DISEÑO RESORTES MECÁNICOS MÉRIDA 2010 INTRODUCCIÓN En el diseño de la mayoría de los elementos mecánicos es deseable, que la deformación inducida

Más detalles

+- +- 1. En las siguientes figuras: A) B) C) D)

+- +- 1. En las siguientes figuras: A) B) C) D) PROBLEMA IDUCCIÓ ELECTROMAGÉTICA 1. En las siguientes figuras: a) eñala que elemento es el inductor y cual el inducido b) Dibuja las líneas de campo magnético del inductor, e indica (dibuja) el sentido

Más detalles

TEMA 6. SOLDADURA Y TÉCNICAS DE UNIÓN.

TEMA 6. SOLDADURA Y TÉCNICAS DE UNIÓN. Félix C. Gómez de León Antonio González Carpena TEMA 6. SOLDADURA Y TÉCNICAS DE UNIÓN. Curso de Resistencia de Materiales y cálculo de estructuras. Índice. Uniones Soldadas. Introducción. Soldadura al

Más detalles

2. Dado el campo de fuerzas F x, Solución: W = 6 J

2. Dado el campo de fuerzas F x, Solución: W = 6 J UNIVERSIDD DE OVIEDO Escuela Politécnica de Ingeniería de Gijón Curso 013-4 1. Dos objetos, uno con masa doble que el otro, cuelgan de los extremos de la cuerda de una polea fija de masa despreciable y

Más detalles

Problemas de Campo eléctrico 2º de bachillerato. Física

Problemas de Campo eléctrico 2º de bachillerato. Física Problemas de Campo eléctrico 2º de bachillerato. Física 1. Un electrón, con velocidad inicial 3 10 5 m/s dirigida en el sentido positivo del eje X, penetra en una región donde existe un campo eléctrico

Más detalles

Examen de TEORIA DE MAQUINAS Junio 95 Nombre...

Examen de TEORIA DE MAQUINAS Junio 95 Nombre... Examen de TEORIA DE MAQUINAS Junio 95 Nombre... El sistema de la figura es un modelo simplificado de un vehículo y se encuentra sometido a la acción de la gravedad. Sus características son: masa m=10 Kg,

Más detalles

CFGS CONSTRUCCION METALICA MODULO 246 DISEÑO DE CONSTRUCCIONES METALICAS

CFGS CONSTRUCCION METALICA MODULO 246 DISEÑO DE CONSTRUCCIONES METALICAS CFGS CONSTRUCCION METALICA MODULO 246 DISEÑO DE CONSTRUCCIONES METALICAS U.T. 2.- RESISTENCIA DE MATERIALES. TRACCION. 1.1.- Resistencia de materiales. Objeto. La mecánica desde el punto de vista Físico

Más detalles

I.- ELEMENTOS EN UNA ESTRUCTURA METÁLICA DE TIPO INDUSTRIAL

I.- ELEMENTOS EN UNA ESTRUCTURA METÁLICA DE TIPO INDUSTRIAL I.- ELEMENTOS EN UNA ESTRUCTURA METÁLICA DE TIPO INDUSTRIAL I.1.- Elementos que componen una estructura metálica de tipo industrial. Una estructura de tipo industrial está compuesta (Fig. I.1) por marcos

Más detalles

OPERADORES MECANICOS

OPERADORES MECANICOS OPERADORES MECANICOS 0.- INTRODUCCION 1.- OPERADORES QUE ACUMULAN ENERGIA MECANICA 1.1.- Gomas 1.2.- Muelles 1.3.- Resortes 2.- OPERADORES QUE TRANSFORMAN Y TRANSMITEN LA ENERGIA MECANICA 2.1- Soportes

Más detalles

CAPÍTULO 2 COLUMNAS CORTAS BAJO CARGA AXIAL SIMPLE

CAPÍTULO 2 COLUMNAS CORTAS BAJO CARGA AXIAL SIMPLE CAPÍTULO 2 COLUMNAS CORTAS BAJO CARGA AXIAL SIMPLE 2.1 Comportamiento, modos de falla y resistencia de elementos sujetos a compresión axial En este capítulo se presentan los procedimientos necesarios para

Más detalles

ENSAYOS MECÁNICOS II: TRACCIÓN

ENSAYOS MECÁNICOS II: TRACCIÓN 1. INTRODUCCIÓN. El ensayo a tracción es la forma básica de obtener información sobre el comportamiento mecánico de los materiales. Mediante una máquina de ensayos se deforma una muestra o probeta del

Más detalles

14º Un elevador de 2000 kg de masa, sube con una aceleración de 1 m/s 2. Cuál es la tensión del cable que lo soporta? Sol: 22000 N

14º Un elevador de 2000 kg de masa, sube con una aceleración de 1 m/s 2. Cuál es la tensión del cable que lo soporta? Sol: 22000 N Ejercicios de dinámica, fuerzas (4º de ESO/ 1º Bachillerato): 1º Calcular la masa de un cuerpo que al recibir una fuerza de 0 N adquiere una aceleración de 5 m/s. Sol: 4 kg. º Calcular la masa de un cuerpo

Más detalles

Sol: 1,3 10-4 m/s. Sol: I = σωr 2 /2

Sol: 1,3 10-4 m/s. Sol: I = σωr 2 /2 2 ELETOINÉTI 1. Por un conductor filiforme circula una corriente continua de 1. a) uánta carga fluye por una sección del conductor en 1 minuto? b) Si la corriente es producida por el flujo de electrones,

Más detalles

Modelización con elementos finitos del resorte del cabezal superior

Modelización con elementos finitos del resorte del cabezal superior 39ª Reunión Anual de la SNE Modelización con elementos finitos del resorte del cabezal superior Jorge Muñoz Cardador ENUSA Industrias Avanzadas S.A. jmu@enusa.es Alberto Cerracín Arranz ENUSA Industrias

Más detalles

Tema 4 : TRACCIÓN - COMPRESIÓN

Tema 4 : TRACCIÓN - COMPRESIÓN Tema 4 : TRCCIÓN - COMPRESIÓN F σ G O σ σ z N = F σ σ σ y Problemas Prof.: Jaime Santo Domingo Santillana E.P.S.-Zamora (U.SL.) - 008 4.1.-Calcular el incremento de longitud que tendrá un pilar de hormigón

Más detalles

Resortes Mecánicos helicoidales. Ing. Carlos Gerez cgerez@gmail.com

Resortes Mecánicos helicoidales. Ing. Carlos Gerez cgerez@gmail.com Resortes Mecánicos helicoidales Ing. Carlos Gerez cgerez@gmail.com Buenos Aires Octubre de 2014 Contenido Introducción, (3) Características de los resortes helicoidales, (4) Materiales, (5) Tipos de Carga,

Más detalles

Es el resorte mas utilizado en la industria. Sus características vienen definidas por las normas DIN 2095 y 2096.

Es el resorte mas utilizado en la industria. Sus características vienen definidas por las normas DIN 2095 y 2096. Resortes a compresión. Es el resorte mas utilizado en la industria. Sus características vienen definidas por las normas DIN 2095 y 2096. PARÁMETROS PRINCIPALES DE UN RESORTE NÚMERO DE ESPIRAS ÚTILES (n):

Más detalles

SOPORTES DE CARGA VARIABLE GRUPO DE 2 PRODUCTOS

SOPORTES DE CARGA VARIABLE GRUPO DE 2 PRODUCTOS SOPORTES DE CARGA VARIABLE SOPORTES DE CARGA VARIABLE GRUPO DE PRODUCTOS COMPONENTES ELÁSTICOS DE CARGA VARIABLE CONTENIDO PÁGINA 0 Soportes colgantes, soportes de apoyo, restricciones elásticas (o sway

Más detalles

Temas CAPÍTULO 9 DISEÑO DE RESORTES 04/08/2011 DISEÑO I. 1. INTRODUCCIÓN Qué es un resorte? Funciones Tipos y configuraciones

Temas CAPÍTULO 9 DISEÑO DE RESORTES 04/08/2011 DISEÑO I. 1. INTRODUCCIÓN Qué es un resorte? Funciones Tipos y configuraciones PÍTULO 9 DISEÑO DE RESORTES DISEÑO I Profesor: Libardo Vanegas Useche 17 de mayo de 2011 Temas 1. INTRODUIÓN Qué es un resorte? unciones Tipos y configuraciones 2. RESORTES HELIOIDLES DE OMPRESIÓN 1 Qué

Más detalles

Apuntes: Diseño de máquinas en aeronáutica.

Apuntes: Diseño de máquinas en aeronáutica. Apuntes: Diseño de máquinas en aeronáutica. Apuntes: Diseño de máquinas en aeronáutica. Alejandro Roger Ull Ingeniería Aeronáutica Segunda edición Septiembre de 2010 Acerca de estos apuntes Estos apuntes

Más detalles

11 Número de publicación: 2 209 060. 51 Int. Cl. 7 : A63H 11/18. 72 Inventor/es: Migliorati, Sostene. 74 Agente: Curell Suñol, Marcelino

11 Número de publicación: 2 209 060. 51 Int. Cl. 7 : A63H 11/18. 72 Inventor/es: Migliorati, Sostene. 74 Agente: Curell Suñol, Marcelino 19 OFICINA ESPAÑOLA DE PATENTES Y MARCAS ESPAÑA 11 Número de publicación: 2 209 060 51 Int. Cl. 7 : A63H 11/18 12 TRADUCCIÓN DE PATENTE EUROPEA T3 86 Número de solicitud europea: 98204123.8 86 Fecha de

Más detalles

TEMA 5 : MECANISMOS RELACIÓN 1: PROBLEMAS DE PALANCAS.

TEMA 5 : MECANISMOS RELACIÓN 1: PROBLEMAS DE PALANCAS. NOMBRE ALUMNO Y CURSO: TEMA 5 : MECANISMOS EL DÍA DEL CONTROL el alumno deberá entregar la libreta con los apuntes y esquemas realizados en clase y en estas fichas los ejercicios resueltos y corregidos.

Más detalles

3 CONDUCTORES ELÉCTRICOS

3 CONDUCTORES ELÉCTRICOS 3 CONDUCTORES ELÉCTRICOS 3.1 CONDUCTORES ELÉCTRICOS METALES MÁS EMPLEADOS Los metales más empleados como conductores en los cables eléctricos son el COBRE y el ALUMINIO. 3.1.1 EL COBRE El COBRE se obtiene

Más detalles

Ejercicios resueltos

Ejercicios resueltos Ejercicios resueltos oletín 7 Inducción electromagnética Ejercicio 1 Una varilla conductora, de 20 cm de longitud y 10 Ω de resistencia eléctrica, se desplaza paralelamente a sí misma y sin rozamiento,

Más detalles

ELEVADOR PROFESIONAL

ELEVADOR PROFESIONAL ELEVADOR PROFESIONAL MINOR MILLENNIUM PLUMA 325 Kg (SÓLO PARA ELEVACIÓN DE MATERIALES) MANUAL DE USO Y MANTENIMIENTO ESTE MANUAL ES PARTE INTEGRANTE DE LA MÁQUINA Advertencia Importante: Antes de poner

Más detalles

**********************************************************************

********************************************************************** 1..- a) Dimensionar la sección de la viga sabiendo que está compuesta por dos tablones dispuestos como se indica en la figura (se trata de hallar a). Tensión admisible de la madera: σ adm, tracción = 50

Más detalles

Guía de ejercicios 5to A Y D

Guía de ejercicios 5to A Y D Potencial eléctrico. Guía de ejercicios 5to A Y D 1.- Para transportar una carga de +4.10-6 C desde el infinito hasta un punto de un campo eléctrico hay que realizar un trabajo de 4.10-3 Joules. Calcular

Más detalles

Pretensores de cinturón

Pretensores de cinturón Fundación Universidad de Atacama Escuela Técnico Profesional Unidad Técnico Pedagógica Profesor: Sr. Jorge Hernández Valencia Módulo: Mantenimiento y montaje de los sistemas de seguridad y confortabilidad

Más detalles

Electrotecnia General Tema 17 TEMA 17 APARATOS DE MEDIDA

Electrotecnia General Tema 17 TEMA 17 APARATOS DE MEDIDA TEMA 17 APARATOS DE MEDIDA 17.1. DEFINICIÓN. Un aparato de medida es un sistema que permite establecer la correspondencia entre una magnitud física que se pretende medir, con otra susceptible de ser percibida

Más detalles

[c] Qué energía mecánica posee el sistema muelle-masa? Y si la masa fuese 2 y la constante 2K?.

[c] Qué energía mecánica posee el sistema muelle-masa? Y si la masa fuese 2 y la constante 2K?. Actividad 1 La figura representa un péndulo horizontal de resorte. La masa del bloque vale M y la constante elástica del resorte K. No hay rozamientos. Inicialmente el muelle está sin deformar. [a] Si

Más detalles

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS DEBER # 3 TRABAJO Y ENERGÍA

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS DEBER # 3 TRABAJO Y ENERGÍA ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS DEBER # 3 TRABAJO Y ENERGÍA 1.- El bloque mostrado se encuentra afectado por fuerzas que le permiten desplazarse desde A hasta B.

Más detalles

RODAMIENTO (también denominado rulemán o cojinete)

RODAMIENTO (también denominado rulemán o cojinete) RODAMIENTO (también denominado rulemán o cojinete) Es un elemento mecánico que reduce la fricción entre un eje y las piezas conectadas a éste, que le sirve de apoyo y facilita su desplazamiento. En busca

Más detalles

Guía 9 Miércoles 14 de Junio, 2006

Guía 9 Miércoles 14 de Junio, 2006 Física I GONZALO GUTÍERREZ FRANCISCA GUZMÁN GIANINA MENESES Universidad de Chile, Facultad de Ciencias, Departamento de Física, Santiago, Chile Guía 9 Miércoles 14 de Junio, 2006 Movimiento rotacional

Más detalles

Diagrama de flujo para seleccionar un eje nervado

Diagrama de flujo para seleccionar un eje nervado Diagrama de flujo para seleccionar un eje nervado Pasos para elegir un eje nervado El siguiente es un diagrama de fl ujo al que puede referirse al seleccionar un eje nervado. Inicio de la selección 1 Configuración

Más detalles

ESFUERZOS EN PAVIMENTOS RÍGIDOS

ESFUERZOS EN PAVIMENTOS RÍGIDOS ESFUERZOS EN PAVIMENTOS RÍGIDOS CONTENIDO Introducción Esfuerzos producidos por cambios de temperatura Esfuerzos producidos por cambios de humedad Esfuerzos producidos por las cargas del tránsito Presencia

Más detalles

Trabajo Investigativo

Trabajo Investigativo Trabajo Investigativo Título: PROYECTO DE UN SISTEMA DE ELEVACIÓN NAVAL (PESCANTE) PARA LANCHA RÁPIDA Autores: Mst. C.T. Inv.Auxiliar. Elpidio Pérez Rivero Ing. Ariel Pereira Arcos Resumen En el presente

Más detalles

Embrague. Indice. Nota: El elemento que presiona sobre el plato de presión cuando no se pisa el pedal del embrague puede ser:

Embrague. Indice. Nota: El elemento que presiona sobre el plato de presión cuando no se pisa el pedal del embrague puede ser: Embrague Indice El embrague es un elemento que se coloca entre el volante de inercia del motor y la caja de cambios. Se acciona por medio de un pedal que gobierna el conductor con su pie izquierdo. Posición

Más detalles

1. Principios Generales

1. Principios Generales Física aplicada a estructuras Curso 13/14 Aquitectura Estática 1. Principios Generales P 1.1 Redondee cada una de las siguientes cantidades a tres cifras significativas: (a) 4,65735 m, (b) 55,578 s, (c)

Más detalles

Tolerancias geométricas

Tolerancias geométricas PRIMER CURSO DE INGENIERÍA TÉCNICA INDUSTRIAL. ELECTRÓNICA Grupos A y B Asignatura: EXPRESIÓN GRÁFICA Y DISEÑO ASISTIDO POR ORDENADOR Tolerancias geométricas Norma UNE 1121-1:1991 1 Significado de las

Más detalles

Cables unipolares aislados con cubierta de polilefina para redes de BT

Cables unipolares aislados con cubierta de polilefina para redes de BT Página 1 de 8 Índice 1.- Objeto 2.- Alcance 3.- Desarrollo Metodológico Redacción Verificación Aprobación Responsable Redactor Departamento de Normalización Dpto. de Sistemas de Gestión Ambiental y de

Más detalles

Tema 7.- Ensayos mecánicos

Tema 7.- Ensayos mecánicos BLOQUE III.- CARACTERIZACIÓN Y PROPIEDADES Tema 7.- Ensayos * William F. Smith Fundamentos de la Ciencia e Ingeniería de Materiales. Tercera Edición. Ed. Mc-Graw Hill * James F. Shackerlford Introducción

Más detalles

MICROPILOTES Y PILOTES INSTRUMENTADOS EN PROFUNDIDAD

MICROPILOTES Y PILOTES INSTRUMENTADOS EN PROFUNDIDAD V CONGRESO DE 1/10 MICROPILOTES Y PILOTES INSTRUMENTADOS EN PROFUNDIDAD Javier RIPOLL GARCÍA-MANSILLA Ingeniero de Caminos, Canales y Puertos Ripoll Consulting de Ingeniería S.L. Director javierripoll@ripollconsulting.com

Más detalles

F:\03- COMERCIAL\CABLESMED\MARKETING CM\RECOMENDACIONES DISEÑO BARANDILLASCOPIA.PDF www.cablesmed.com Nº 7001679 Recomendaciones para el diseño de barandillas con cables tensados Las presentes recomendaciones

Más detalles

Se deben cumplir las siguientes condiciones:

Se deben cumplir las siguientes condiciones: 1.- Se debe diseñar un resorte helicoidal cilíndrico para montarlo en el interior de un bolígrafo retráctil, sobre el extremo del tubo de recambio, de modo que dicho tubo es actuado directamente por un

Más detalles

5 Conclusiones. Los principales objetivos de este trabajo de tesis, ya expuestos en la Introducción, son:

5 Conclusiones. Los principales objetivos de este trabajo de tesis, ya expuestos en la Introducción, son: 157 5 Los principales objetivos de este trabajo de tesis, ya expuestos en la Introducción, son: 1) Diseñar un método de clasificación visual por resistencia para la madera aserrada de Eucalyptus grandis

Más detalles

Los carros de diferentes longitudes con punto central de lubricación facilitan el mantenimiento y permiten el montaje de diversos accesorios.

Los carros de diferentes longitudes con punto central de lubricación facilitan el mantenimiento y permiten el montaje de diversos accesorios. MTJ / MRJ. características Las series MTJ y MRJ son módulos lineales compactos de transmisión por correa dentada que proporcionan una elevada capacidad de carga, alta velocidad, precisión y repetitibilidad.

Más detalles

11 knúmero de publicación: 2 155 862. 51 kint. Cl. 7 : A47B 9/20

11 knúmero de publicación: 2 155 862. 51 kint. Cl. 7 : A47B 9/20 k 19 OFICINA ESPAÑOLA DE PATENTES Y MARCAS ESPAÑA 11 knúmero de publicación: 2 1 862 1 kint. Cl. 7 : A47B 9/20 A47B 17/03 A47B 9/04 12 k TRADUCCION DE PATENTE EUROPEA T3 86 knúmero de solicitud europea:

Más detalles

plettac Andamio modular

plettac Andamio modular Página 1 plettac Andamio modular Assco perfect Futuro contur Instrucciones de de montaje montaje seguro y de y aplicación Edición Enero 2006 Edición Diciembre 2004 Página 2 Andamio modular ASSCO FUTURO

Más detalles

ELEVADOR PROFESIONAL

ELEVADOR PROFESIONAL ELEVADOR PROFESIONAL MINOR MILLENNIUM POLIPASTO 325 Kg (SÓLO PARA ELEVACIÓN DE MATERIALES) MANUAL DE USO Y MANTENIMIENTO ESTE MANUAL ES PARTE INTEGRANTE DE LA MÁQUINA Advertencia Importante: Antes de poner

Más detalles

RESORTE DE COMPRESION RESORTE DE COMPRESION

RESORTE DE COMPRESION RESORTE DE COMPRESION MISION Somos una empresa líder en producción y comercialización de todo tipo de resortes industriales, partes automotrices, maquinaria agrícola, mecanismos eléctricos, puertas automáticas, válvulas entre

Más detalles

Consignas de reflexión a) Defina el concepto de momento torsor. b) Cómo se distribuyen las tensiones de corte en la sección transversal de la llave?

Consignas de reflexión a) Defina el concepto de momento torsor. b) Cómo se distribuyen las tensiones de corte en la sección transversal de la llave? TRABAJO PRACTICO Nro. 8- TORSION 1) a ) Para la llave de la fig. calcule la magnitud del par de torsión aplicado al perno si se ejerce una fuerza de 50 N en un punto a 250 mm del eje de la caja. b) Calcule

Más detalles

Examen de Física-1, 1 Ingeniería Química Examen final. Septiembre de 2012 Problemas (Dos puntos por problema).

Examen de Física-1, 1 Ingeniería Química Examen final. Septiembre de 2012 Problemas (Dos puntos por problema). Examen de Física-1, 1 Ingeniería Química Examen final. Septiembre de 01 Problemas (Dos puntos por problema). Problema 1 (Primer parcial): Suponga que trabaja para una gran compañía de transporte y que

Más detalles

MATERIA: TÉCNOLOGIA FÍSICA-MECÁNICA. AÑO: 1ro.

MATERIA: TÉCNOLOGIA FÍSICA-MECÁNICA. AÑO: 1ro. MATERIA: TÉCNOLOGIA FÍSICA-MECÁNICA AÑO: 1ro. CARGA HORARIA TOTAL MATERIA: 150 hs. anuales CARGA HORARIA SEMANAL: 5 hs. Página 1 de 14 SUBMATERIA: FUNDAMENTOS DE FÍSICA OBJETIVOS GENERALES DE LA SUBMATERIA

Más detalles

1 SOBREPRESIÓN POR GOLPE DE ARIETE

1 SOBREPRESIÓN POR GOLPE DE ARIETE 1 SOBREPRESIÓN POR GOLPE DE ARIETE Golpe de ariete es el término utilizado para denominar el choque producido en una conducción por una súbita disminución en la velocidad del fluido. El cierre en una válvula

Más detalles

CARACTERISTICAS TÉCNICAS QUE DEFINEN LOS CABLES DE ACERO

CARACTERISTICAS TÉCNICAS QUE DEFINEN LOS CABLES DE ACERO CARACTERISTICAS TÉCNICAS QUE DEFINEN LOS CABLES DE ACERO CONSTRUCCIÓN La construcción de los cables se realiza de la forma siguiente: 1-Alambre central, 2- Cordón, 3- Alambre, 4- Cable, 5- Alma MASA DEL

Más detalles

Ejercicios resueltos

Ejercicios resueltos Ejercicios resueltos oletín 6 Campo magnético Ejercicio Un electrón se acelera por la acción de una diferencia de potencial de 00 V y, posteriormente, penetra en una región en la que existe un campo magnético

Más detalles

EMPALMES DE FIBRA OPTICA

EMPALMES DE FIBRA OPTICA EMPALMES DE FIBRA OPTICA OBJETIVO Objetivo General Conocer los diferentes tipos de empalmes, su utilización y aplicación, métodos de realización y caracterización de los mismos. 2 CARACTERISTICAS DE LOS

Más detalles

PROGRAMA Ingeniería Mecatrónica PLAN DE ESTUDIOS ACTA DE CONSEJO DE FACULTAD/DEPTO./CENTRO: 1. DATOS GENERALES CRÉDITOS ACADÉMICO S: 3 CÓDIGO: 924044

PROGRAMA Ingeniería Mecatrónica PLAN DE ESTUDIOS ACTA DE CONSEJO DE FACULTAD/DEPTO./CENTRO: 1. DATOS GENERALES CRÉDITOS ACADÉMICO S: 3 CÓDIGO: 924044 Página 1 de 5 PROGRAMA Ingeniería Mecatrónica PLAN DE ESTUDIOS ACTA DE CONSEJO DE FACULTAD/DEPTO./CENTRO: V 077 1. DATOS GENERALES ASIGNATURA/MÓDULO/SEMINARIO: RESISTENCIA DE MATERIALES CÓDIGO: 924044

Más detalles

CAPITULO 4. ENSAYO DE FLEXIÓN

CAPITULO 4. ENSAYO DE FLEXIÓN CAPITULO 4. ENSAYO DE FLEXIÓN 4.1 OBJETIVOS DEL ENSAYO Los objetivos de los ensayos de flexión son principalmente dos: - Determinar una curva carga-desplazamiento del prototipo - Determinar la distribución

Más detalles

Capítulo 4. Elasticidad

Capítulo 4. Elasticidad Capítulo 4 Elasticidad 1 Ley de Hooke Cuando estiramos o comprimimos un muelle, la fuerza recuperadora es directamente proporcional al cambio de longitud x respecto de la posición de equilibrio: F = k

Más detalles

bibjbkqlp=ab=`fjbkq^`fþk

bibjbkqlp=ab=`fjbkq^`fþk OPENCOURSEWARE INGENIERIA CIVIL I.T. Obras Públicas / Ing. Caminos bibjbkqlp=ab=`fjbkq^`fþk iìáë=_~ μå_ä òèìéò mêçñéëçê=`çä~äçê~ççê af`lmfr (c) 2010-11 Luis Bañón Blázquez. Universidad de Alicante página

Más detalles

TEMA 1: REPRESENTACIÓN GRÁFICA. 0.- MANEJO DE ESCUADRA Y CARTABON (Repaso 1º ESO)

TEMA 1: REPRESENTACIÓN GRÁFICA. 0.- MANEJO DE ESCUADRA Y CARTABON (Repaso 1º ESO) TEMA 1: REPRESENTACIÓN GRÁFICA 0.- MANEJO DE ESCUADRA Y CARTABON (Repaso 1º ESO) Son dos instrumentos de plástico transparente que se suelen usar de forma conjunta. La escuadra tiene forma de triángulo

Más detalles

Trabajo y Energía. W = FO. xo. t t =mvo. vo= ( 1 2 m vo2 )= K, y, F z = U E = K +U. E =K + i. U i

Trabajo y Energía. W = FO. xo. t t =mvo. vo= ( 1 2 m vo2 )= K, y, F z = U E = K +U. E =K + i. U i Trabajo y Energía Trabajo vo xo=m vo xo W = FO. xo FO: Fuerza aplicada, XOes el desplazamiento. Usando la Segunda Ley de Newton: W = m t t =mvo. vo= ( 1 2 m vo2 )= K, Teorema del Trabajo y la Energía K

Más detalles

ENSAYO DE TRACCIÓN UNIVERSAL

ENSAYO DE TRACCIÓN UNIVERSAL BLOQUE II.- Práctica II.-Ensayo de Tracción, pag 1 PRACTICA II: ENSAYO DE TRACCIÓN UNIVERSAL OBJETIVOS: El objetivo del ensayo de tracción es determinar aspectos importantes de la resistencia y alargamiento

Más detalles

k 11 N. de publicación: ES 2 030 240 k 51 Int. Cl. 5 : B25B 27/30 k 72 Inventor/es: Klann, Horst k 74 Agente: González Vacas, Eleuterio

k 11 N. de publicación: ES 2 030 240 k 51 Int. Cl. 5 : B25B 27/30 k 72 Inventor/es: Klann, Horst k 74 Agente: González Vacas, Eleuterio k 19 OFICINA ESPAÑOLA DE PATENTES Y MARCAS ESPAÑA k 11 N. de publicación: ES 2 0 2 k 1 Int. Cl. : B2B 27/ k 12 TRADUCCION DE PATENTE EUROPEA T3 k k k k 86 Número de solicitud europea: 891248. 86 Fecha

Más detalles

Ejercicios resueltos

Ejercicios resueltos Ejercicios resueltos Boletín 5 Campo eléctrico Ejercicio 1 La masa de un protón es 1,67 10 7 kg y su carga eléctrica 1,6 10 19 C. Compara la fuerza de repulsión eléctrica entre dos protones situados en

Más detalles

Comportamiento Mecánico

Comportamiento Mecánico TEMA IV Comportamiento Mecánico LECCIÓN 5 Otros ensayos mecánicos 1 5.1 ENSAYO DE COMPRESIÓN En los ensayos de compresión, la forma de la probeta tiene gran influencia, por lo que todas ellas son de geometrías

Más detalles

DETERMINACIÓN DE LA RESISTENCIA A COMPRESIÓN DIAGONAL Y DE LA RIGIDEZ A CORTANTE DE MURETES DE MAMPOSTERÍA DE BARRO Y DE CONCRETO

DETERMINACIÓN DE LA RESISTENCIA A COMPRESIÓN DIAGONAL Y DE LA RIGIDEZ A CORTANTE DE MURETES DE MAMPOSTERÍA DE BARRO Y DE CONCRETO DETERMINACIÓN DE LA RESISTENCIA A COMPRESIÓN DIAGONAL Y DE LA RIGIDEZ A CORTANTE DE MURETES DE MAMPOSTERÍA DE BARRO Y DE CONCRETO 1. OBJETIVO Y CAMPO DE APLICACIÓN Esta Norma Mexicana establece los métodos

Más detalles

PROBLEMAS DE EQUILIBRIO

PROBLEMAS DE EQUILIBRIO PROBLEMAS DE EQUILIBRIO NIVEL BACHILLERATO Con una honda Curva con peralte Tomar una curva sin volcar Patinador en curva Equilibrio de una puerta Equilibrio de una escalera Columpio Cuerda sobre cilindro

Más detalles

DL 1010B BOBINADORA MANUAL 2 DL 1010D COLUMNA PORTACARRETES CON TENSOR DE ALAMBRE 2 DL 1012Z BOBINADORA PARA MOTORES Y TRANSFORMADORES 2

DL 1010B BOBINADORA MANUAL 2 DL 1010D COLUMNA PORTACARRETES CON TENSOR DE ALAMBRE 2 DL 1012Z BOBINADORA PARA MOTORES Y TRANSFORMADORES 2 INDEX DL 1010B BOBINADORA MANUAL 2 DL 1010D COLUMNA PORTACARRETES CON TENSOR DE ALAMBRE 2 DL 1012Z BOBINADORA PARA MOTORES Y TRANSFORMADORES 2 DL 2106 KIT PARA EL MONTAJE DE 2 TRANSFORMADORES 3 DL 2106A

Más detalles

ETATRACK Active 400. Sistema de Seguimiento Solar Activo. Aplicaciones. Características generales

ETATRACK Active 400. Sistema de Seguimiento Solar Activo. Aplicaciones. Características generales ETATRACK Active 400 Sistema de Seguimiento Solar Activo Aplicaciones El seguimiento solar de eje simple proporciona un aumento de energía del 25% al 35% al año, y de hasta el 55% durante los meses del

Más detalles

FUERZA. POTENCIA Definición Es el trabajo realizado en la unidad de tiempo (t) P = W / t

FUERZA. POTENCIA Definición Es el trabajo realizado en la unidad de tiempo (t) P = W / t CONCEPTOS BÁSICOS FUERZA Definición Es toda causa capaz de producir o modificar el estado de reposo o de movimiento de un cuerpo o de provocarle una deformación Unidad de medida La unidad de medida en

Más detalles

INSTRUMENTOS MECÁNICOS Características y funcionamiento

INSTRUMENTOS MECÁNICOS Características y funcionamiento INSTRUMENTOS MECÁNICOS Características y funcionamiento Estos indicadores basan su funcionamiento en la conversión directa, por medios mecánicos, de un determinado efecto físico, en un movimiento que servirá

Más detalles

Tema 19 Modelo de Weibull para predecir la fractura de los materiales frágiles.

Tema 19 Modelo de Weibull para predecir la fractura de los materiales frágiles. Tema 19 Modelo de Weibull para predecir la fractura de los materiales frágiles. Los Materiales Cerámicos tienen las siguientes características: Son compuestos químicos o soluciones complejas que contienen

Más detalles
Sitemap