Sie.Leben.BONUS.1988.COMPLETE.BLURAY-HDSource | Tony Jaa | Hook ou la revanche du Capitaine Crochet

Problemas de Investigación Operativa y Programación Matemática


Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Problemas de Investigación Operativa y Programación Matemática"

Transcripción

1 Problemas de Investigación Operativa y Programación Matemática Omar J. Casas López Septiembre 2002 Tema I : Introducción 1. Una factoría fabrica dos tipos de productos, A y B. Para su elaboración se requieren dos máquinas, M 1 y M 2. El artículo A necesita 2 horas de trabajo de la máquina M 1 y 1,5 horas de la máquina M 2. El artículo B, 1,5 horas y 1 hora, respectivamente. Cada máquina está en funcionamiento, a lo sumo, 40 horas semanales. Por cada unidad del artículo A se obtiene un beneficio de 250 euros, mientras que por cada unidad del artículo B es de 150 euros. Cuántas unidades de A y cuántas de B deben fabricarse semanalmente para obtener un beneficio máximo? 2. Un inversionista dispone de dos millones de euros, puede invertir en bonos del tipo A, que dan un rendimiento del 10 por cien, y en bonos del tipo B, cuyo rendimiento es del 15 por cien. Existen unos topes legales que impiden invertir más de euros en bonos del tipo B, pero sucede lo contrario con los del tipo A, en los cuales la inversión mínima es de medio millón de pesetas. Por otra parte el inversionista desea colocar en bonos del tipo A tanto dinero, al menos, como en bonos del tipo B. Cuánto debe invertir en bonos de cada tipo para que el rendimiento obtenido sea máximo? 3. Un campesino posee un terreno rústico de 70m 2 que desea utilizar para dos tipos de cultivos, A y B. Cada m 2 del cultivo A le supone un gasto de 6000 euros y cada m 2 del B 3000 euros, también por m 2, el cultivo A supone tres días de trabajo, mientras que para el cultivo B son cuatro días. El agricultor dispone de euros para invertir en el terreno y cuenta con unos beneficios de euro por m 2 cultivado de A y con euros por m 2 cultivado de B. Si el agricultor puede trabajar 1

2 los cultivos durante 120 días como máximo al año qué superficie debe dedicar a cada tipo de cultivo para obtener un beneficio máximo? 4. Una fábrica utiliza dos tipos de maquinarias para producir dos tipos de artículos. El artículo A del que deben salir diariamente de la fábrica al menos 500 unidades, se puede obtener de la máquina I a razón de 100 unidades diarias, y de la máquina II a razón de 80 unidades diarias. Las cifras correspondientes al artículo B son, 50 y 100, respectivamente, pero se requiere un mínimo de 800 unidades por día. El coste de una máquina del tipo I es de dos millones de euros, y el de una máquina del tipo II es de un millón de euros. el importador de la maquinaria no acepta pedidos que no incluyan un mínimo de dos máquinas I y cuatro II. En estas condiciones y si se quiere cubrir la producción, cuántas máquinas de cada tipo se deben comprar para que los costes de adquisición sean mínimos? 5. Una dieta alimenticia debe contener al menos 400 unidades de vitaminas, 500 unidades de minerales y 1400 calorías. El alimento A contiene 200 unidades de vitaminas, 100 unidades de minerales y 400 calorías, por kg. El alimento B contiene 100, 200 y 400, también por kg respectivamente. Cada kg del alimento A cuesta 500 euros y cada kg de B cuesta 300 euros. Cuál debe ser la composición de la dieta para que el coste diario sea el menor posible? 6. La producción anual de una fábrica de cemento es de dos millones y medio de contenedores. La fábrica dispone de colectores mecánicos para controlar la contaminación del aire, pero pese a ello, por la fabricación de cada contenedor se emiten dos unidades de contaminación al aire. Por esta razón se propone a la industria que remplace sus colectores por precipitadores electrostáticos que pueden ser de dos tipos: el tipo A reduce la emisión de partículas contaminantes a la cuarta parte, y el tipo B a la décima parte. Los costes asociados al funcionamiento de los precipitadores, por contenedor, son de 0,14 dólares para el tipo A y de 0,18 dólares para el tipo B. si la contaminación debe reducirse en cuatro millones doscientas mil unidades, cuántos contenedores de cemento deben seguir tratamiento anticontaminante en cada tipo de precipitador para que el coste de la operación sea el menor posible? 7. Unos grandes almacenes encargan a un fabricante chándales y chaquetas deportivas. El fabricante dispone para la confección de 750m de tejido de algodón y 1000m de tejido de poliester. Cada chándal precisa de 1m de algodón y 2m de poliester y cada chaqueta de 1,5m de 2

3 algodón y 1m de poliester. El precio de venta del chándal se fija en 50 euros y el de la chaqueta en 40 euros. Qué cantidad de chándales y chaquetas debe suministrar el fabricante a los almacenes para obtener mayor beneficio? 8. Unos laboratorios disponen de 80 litros de un producto A y de 120 litros de otro B. Con ellos prepara dos compuestos α y β. El α se consigue con tres partes de B y una de A, en el compuesto β la proporción es al 50 por ciento. Los preparados se venden en frascos con un contenido de 4 litros, el α a 5 euros y el β a 6 euros. Cuántos litros de cada compuesto debe preparar para obtener mayor ganancia? 9. Una empresa de transportes tiene dos tipos de camiones, los del tipo A con un espacio refrigerado de 20 m 3 y un espacio no refrigerado de 40 m 3, los del tipo B, con igual capacidad total pero al 50 por ciento de refrigerado y no refrigerado. La contratan para transportar 3000 m 3 de un producto que precisa refrigeración y 4000 m 3 de otro producto que no necesita refrigeración. El coste por kilómetro de un camión del tipo A es de 0,3 euros y el de B de 0,4 euros. Cuántos camiones de cada tipo se han de utilizar para que el coste total sea mínimo? 10. Para el tratamiento de una enfermedad hay que suministrar a los pacientes tres tipos de vitaminas: α,β y γ. Quincenalmente precisan, al menos de 875 mg de vitamina α, 600 mg de β y 400 mg de γ. En el mercado dichas vitaminas están en dos productos A y B, cada comprimido de A contiene 25 mg de la vitamina α, 20 mg de la β y 30 mg de la γ, y cada comprimido de B contiene 25 mg de la vitamina α, 30 mg de la β y 10 mg de la γ. El coste de cada comprimido de A es de 7,5 euros y el de B de 9 euros. Qué cantidad de comprimidos de cada producto hará más económico el tratamiento? 11. Una empresa que organiza viajes tiene dos tipos de vehículos: 19 microbuses, que pueden llevar a 18 turistas, y 17 autobuses que permiten trasportar a 45 turistas. La compañía emplea a 30 conductores y a 35 guías. Cada vehículo necesita un solo conductor, pero mientras en los microbuses basta con un guía, en los autobuses es necesario que vayan dos. Cuál es la máxima cantidad de turistas a los que se puede atender simultáneamente?. Cuántos vehículos de cada tipo hay que tener en servicio para alcanzar esa cifra de clientes? 12. Un fabricante de cierto tipo de mercancías posee dos almacenes y abastece a dos mercados. El primer almacén contiene 15 toneladas 3

4 de la referida mercancía y el segundo almacén 20. El primer mercado requiere 10 toneladas y el segundo 25. El coste del envío desde el primer almacén al primer mercado es de 7,5 euros por tonelada y al segundo mercado es de 12,5 euros. Desde el segundo almacén los costes por toneladas son de 10 euros a cualquiera de los dos mercados. Qué cantidad debe enviar desde cada almacén a cada depósito para minimizar los costes de envío? 13. En un taller se fabrican jerseys de lana de dos tipos. El primer tipo consume, por jersey, 4 madejas de 350 pesetas y 2 madejas de 300 pesetas. El segundo tipo 3 madejas de 350 pesetas y 3 de 320 pesetas. Los gastos de fabricación son de 650 ptas. para el primer tipo y de 1900 ptas. para el segundo, siendo los precios respectivos de venta de 5000 y 6600 ptas. Sabemos que a la semana no se pueden fabricar más de 100 jerseys y, que por las limitaciones de la tecnología empleada, por cada jersey del segundo tipo hay que confeccionar por lo menos tres del primero. Cuál debe ser la cantidad de jerseys de cada tipo, fabricados a la semana para obtener el máximo beneficio? 14. Para el tratamiento de cierta enfermedad hay que administrar tres vitaminas, que designaremos por a, b y c, a la semana es preciso consumir al menos 432 mg de la a, 270 de la b y 180 de la c. Estas vitaminas se presentan en dos preparados : el A con comprimidos de 80 mg que cuestan 25 ptas y cuya composición es 20 % de a, 40 % de b y 40 % de c y el B cuyos comprimidos pesan 90 mg, cuestan 30 ptas. y de composición es 30 % de a, 60 % de b y 10 % de c. Qué cantidad de comprimidos de cada preparado harán más económico el tratamiento? 15. Una empresa de productos farmacéuticos fabrica un complejo vitamínico en ampollas que debe contener, al menos, 18 unidades de la vitamina p y 24 de la vitamina q, en cada ampolla. Dichas vitaminas se pueden obtener de los compuestos A y B; A contiene una unidad de vitamina p y ocho unidades de vitamina q, por cada gramo, y B, seis de p y tres de q, también por cada gramo. Si el producto A cuesta 15 ptas/g y el B 30 ptas/g, determinar las cantidades de cada producto que se deben tomar para cada ampolla, con el fin de que el coste sea mínimo. 16. Un estudiante universitario decide a principio de curso, durante el periodo de matriculación, las materias que estudiará durante el curso. El plan de estudios está estructurado por créditos, bloques de diez horas lectivas. Al matricularse el estudiante debe indicar cuántos créditos 4

5 quiere cursar y a qué materias corresponden éstos. Pueden diferenciarse dos tipos de créditos, los que corresponden a materias teóricas y los que tienen contenido eminentemente práctico. El estudiante sabe que por cada crédito teórico del que se matricule deberá dedicar 15 horas al estudio (aparte de las 10 horas lectivas). Las horas de estudio que requiere cada crédito práctico son sólo 5. Él está dispuesto a estudiar al menos 400 horas durante el próximo curso, pero no más de 600. Por otra parte, las normas de matriculación le obligan a que el número de créditos de los cuales se matricula no sea superior a 60, ni inferior a 45. Además, al menos dos terceras partes de los créditos elegidos han de ser de carácter teórico. El estudiante quiere maximizar el número de créditos de los que se matricula. Plantea y resuelve su problema de optimización. 17. Una compañía que recicla papel usa papel y tela desechados para fabricar dos tipos distintos de papel reciclado. Cada tanda de papel reciclado de clase A requiere 20 kg de tela y 180 kg de papel y produce un beneficio de 500 euros, mientras que cada tanda de papel reciclado de clase B requiere 10 kg de tela y 150 kg de papel y produce un beneficio de 250 euros. La compañía dispone de 100 kg de tela y 660 kg de papel. Cuántas tandas debe fabricar de cada tipo? 18. La empresa Animales Salvajes S.A. cría faisanes y perdices para repoblar el bosque y dispone de sitio para criar 100 pájaros durante la temporada. Criar un faisán cuesta 20 euros y criar una perdiz cuesta 30 euros. La fundación Vida Animal paga a Animales Salvajes S.A. por los pájaros de forma que se obtiene un beneficio de 14 euros por cada faisán y 16 euros por cada perdiz. La empresa dispone de 2400 euros para cubrir costes. Cuántas perdices y cuántos faisanes debe criar? 19. La siguiente tabla da, para cinco alimentos básicos, A, B, C, D y E el porcentaje de proteínas, grasas e hidratos de carbono: Proteínas Grasas Hidratos de carbono A B C D E Los precios por unidad de estos alimentos, dados en el mismo orden de la tabla son 5, 17, 37, 10, 15. Si una persona necesita consumir 5

6 como mínimo 75 gramos de proteínas, 90 de grasas y 300 de hidratos de carbono, plantear el problema de minimización para calcular la dieta alimenticia de mínimo coste. 20. La siguiente tabla indica los requerimientos mínimos de personal de enfermería en un hospital en distintos períodos del día. Período del día Número de enfermeras/os requerido 8:00-12: :00-16: :00-20: :00-24: :00-4: :00-8:00 60 El trabajo está organizado en seis turnos de ocho horas cada uno. Cada cuatro horas comienza un nuevo turno. Por tanto, cada turno coincide durante las cuatro primeras horas con el turno anterior y durante las cuatro últimas con el turno siguiente. Plantear el problema de optimización para determinar cuántos enfermeros/as deben formar parte de cada turno, de forma que el número total sea mínimo y que se cumplan los requerimientos mínimos de personal. 21. Un pastelero dispone de 150 kg de harina, 22 kg de azúcar y 27.5 kg de mantequilla para elaborar dos tipos de pasteles (A y B). Cada caja de pasteles de tipo A requiere 3 kg de harina, 1 kg de azúcar y 1 kg de mantequilla y su venta le reporta un beneficio de 20 unidades monetarias (UM). Cada caja de pasteles de tipo B requiere 6 kg de harina, 0.5 kg de azúcar y 1 kg de mantequilla y su venta le reporta un beneficio de 30 UM. (a) Cuántas cajas de cada tipo debe elaborar el pastelero de manera que se maximicen sus ganancias? Resolver el problema gráficamente. (b) Supongamos que la cantidad de harina disponible aumenta en un kg. Cuánto aumenta el beneficio del pastelero? Contestar a la misma cuestión para un aumento de un kg en la cantidad de azúcar y mantequilla. 22. Una fábrica usa tres máquinas para producir dos tipos de productos. La siguiente tabla indica el número de horas que cada máquina necesita para producir una unidad de cada producto y el tiempo total de 6

7 disponibilidad para cada máquina durante el período de producción. Los directivos de la fábrica quieren maximizar el número total de productos fabricados, pero quieren que la cantidad de producto 1 sea al menos un tercio del total de la producción. Tiempo necesario Máquina Producto 1 Producto 2 Tiempo disponible Torno Lijadora Enceradora Plantear el correspondiente problema de optimización. 23. Se dispone de dos complejos vitamínicos (marcas 1 y 2) cuyos costes por unidad de peso son 30 y 40 pesetas, respectivamente. Se desea asegurar la ingesta de un mínimo de 36 unidades de vitamina A al día, 28 unidades de vitamina C y 32 de vitamina D. Supongamos que la marca 1 proporciona (por unidad de peso) 2 unidades de vitamina A, 2 de vitamina C y 8 de vitamina D. La marca 2 proporciona 3, 2 y 2 unidades respectivamente. Plantear el problema de optimización para calcular la combinación de coste más bajo que garantice la ingesta mínima diaria de las tres vitaminas. 24. Una fábrica de cervezas produce cuatro variedades distintas de esta bebida (Light, Dark, Ale y Premium). En la siguiente tabla se indican las cantidades de malta, lúpulo y levadura necesarias para producir una unidad de volumen de cada una de las cuatro modalidades. También se indica la cantidad total disponible de cada una de estas tres materias primas y el beneficio en euros producido por la venta de una unidad de volumen de cada una de las cuatro modalidades de cerveza. Plantear el problema de optimización adecuado para determinar la producción x i, i = 1,..., 4 (en unidades de volumen) de cada tipo de cerveza de manera que se maximice el beneficio del fabricante. Light Dark Ale Premium Disponible Malta Lúpulo Levadura Beneficio Una compañía minera produce lignito y antracita. Por el momento, es capaz de vender todo el carbón producido, siendo la ganancia por 7

8 tonelada de lignito y antracita 4 y 3 unidades monetarias, respectivamente. El procesado de cada tonelada de lignito requiere 3 horas de trabajo de la máquina de cortar carbón y otras 4 horas de la de lavado. Por otra parte, el procesado de una tonelada de antracita requiere para las mismas tareas 4 y 2 horas, respectivamente. El tiempo disponible diariamente para cada una de estas actividades es de 12 horas y 8 horas, respectivamente. Además, se desea producir diariamente al menos cuatro toneladas de carbón. Plantear un problema de programación lineal para determinar el número de toneladas de lignito y antracita que deben producirse diariamente con el fin de maximizar la ganancia. 26. Un fabricante de muebles desea determinar cuantas mesas, sillas, escritorios y estanterías deberá fabricar, con el objetivo de optimizar los recursos disponibles. En estos muebles se utilizan dos tipos de madera, contando con 1500 m del tipo A y 250 m del tipo B, del tipo A cada mueble requiere 5, 1, 9 y 12 m respectivamente, del tipo B cada metro de madera permite producir 2 mesas ó 3 sillas ó 4 escritorios ó 1 estantería. Se requieren de 3 horas/hombres, 2 h/h, 5 h/h y 10 h/h para producir una unidad de cada mueble, en total se disponen de 800 h/h. Se desea maximizar la utilidad, teniendo en cuenta que la ganancia por cada mueble está estimada en 12, 5, 15 y 10 euros respectivamente. 27. Una compañía aérea está considerando la compra de nuevos aviones, existiendo tres tipos de ofertas: tipo A para vuelos largos, tipo B para vuelos medianos y tipo C para vuelos cortos. Los precios de compra por avión de cada tipo son: los del tipo A, del B y del C. La compañía cuenta con un fondo de para este propósito. Los beneficios netos por avión son de para A, para B y para C. La compañía cuenta con pilotos para atender hasta 30 aviones nuevos. Si solamente se adquieren aviones del tipo C, las facilidades de mantenimiento alcanzarían para 40 aviones, sin embargo cada avión de tipo A equivale a 5/3 de avión del tipo C y el B equivale a 4/3, en términos de facilidades de mantenimiento. Se desea saber como debe estructurarse la compra de nuevos aviones con el objetivo de obtener el máximo beneficio. 8

PPL PARA RESOLVER CON SOLVE

PPL PARA RESOLVER CON SOLVE PPL PARA RESOLVER CON SOLVE 1. Una compañía posee dos minas: la mina A produce cada día 1 tonelada de hierro de alta calidad, 3 toneladas de calidad media y 5 de baja calidad. La mina B produce cada día

Más detalles

11.1. Diferentes situaciones sobre regiones factibles y óptimos. 1. Maximizar la función F(x,y) = 40x + 50y sujeta a las restricciones:

11.1. Diferentes situaciones sobre regiones factibles y óptimos. 1. Maximizar la función F(x,y) = 40x + 50y sujeta a las restricciones: 11.1. Diferentes situaciones sobre regiones factibles y óptimos. 1. Maximizar la función F(x,y) = 40x + 50y sujeta a las restricciones: 0 0 (1) 2x + 5y 50 (3) 3x + 5y 55 (5) x (2) 5x + 2y 60 (4) x + y

Más detalles

I E S CARDENAL CISNEROS -- DEPARTAMENTO DE MATEMÁTICAS PROGRAMACIÓN LINEAL

I E S CARDENAL CISNEROS -- DEPARTAMENTO DE MATEMÁTICAS PROGRAMACIÓN LINEAL I E S CARDENAL CISNEROS -- DEPARTAMENTO DE MATEMÁTICAS PROGRAMACIÓN LINEAL x + y 1 Dada la región del plano definida por las inecuaciones 0 x 3 0 y 2 a) Para qué valores (x, y) de dicha región es máxima

Más detalles

1º Dibuja las regiones factibles definidas por los siguientes sistemas:

1º Dibuja las regiones factibles definidas por los siguientes sistemas: Departamento de Matemáticas 2º de bachillerato Matemáticas II aplicadas a las Ciencias Sociales Tema 3: Programación lineal. 1º Dibuja las regiones factibles definidas por los siguientes sistemas: 0,3

Más detalles

Colección de Problemas IV

Colección de Problemas IV 1.- Una compañía se dedica a la elaboración de 2 productos, la demanda de estos productos es de 200 unidades para cada uno de ellos. La compañía podrá elaborar los productos o comprarlos a un proveedor.

Más detalles

Programación lineal. Observación: La mayoría de estos problemas se han propuesto en exámenes de selectividad

Programación lineal. Observación: La mayoría de estos problemas se han propuesto en exámenes de selectividad 1 Observación: La mayoría de estos problemas se han propuesto en exámenes de selectividad 1. Dibuja la región del plano definida por las siguientes inecuaciones: x 0, 0 y 2, y + 2x 4 Representando las

Más detalles

Restricciones. Cada pesquero se tarda en reparar 100 horas y cada yate 50 horas. El astillero dispone de 1600 horas para hacer las reparaciones

Restricciones. Cada pesquero se tarda en reparar 100 horas y cada yate 50 horas. El astillero dispone de 1600 horas para hacer las reparaciones Modelo 2014. Problema 2A.- (Calificación máxima: 2 puntos) Un astillero recibe un encargo para reparar barcos de la flota de un armador, compuesta por pesqueros de 500 toneladas y yates de 100 toneladas.

Más detalles

PROGRAMACIÓN LINEAL Junio 94. Un fabricante de coches lanza una oferta especial en dos de sus modelos, ofreciendo el modelo A a un precio de 1,5 millones de pesetas y el modelo B en 2 millones. La oferta

Más detalles

Tema 1. - SISTEMAS DE ECUACIONES.

Tema 1. - SISTEMAS DE ECUACIONES. Matemáticas aplicadas CCSS. Ejercicios modelo Selectividad - Tema. - SISTEMAS DE ECUACIONES. Ejercicio. ( ) a) ( puntos) Determine dos números sabiendo que al dividir el mayor por el menor obtenemos 7

Más detalles

LA PROGRAMACIÓN LINEAL. SÓLO ENUNCIADOS 6

LA PROGRAMACIÓN LINEAL. SÓLO ENUNCIADOS 6 Curso ON LINE "Tema 06" Tema LA PROGRAMACIÓN LINEAL. SÓLO ENUNCIADOS 6 001 002 003 Una fábrica de vidrio reciclado va a producir 2 tipos de copas: unas sencillas que vende a 450 cada caja y otras talladas

Más detalles

Programación lineal. 1º) En la región del plano determinada por, hallar las

Programación lineal. 1º) En la región del plano determinada por, hallar las Programación lineal 1º) En la región del plano determinada por, hallar las coordenadas de los puntos en los que la función alcanza su valor mínimo y máximo. Máximo en el punto y mínimo en el punto. 2º)

Más detalles

TEMA 3. PROGRAMACIÓN LINEAL

TEMA 3. PROGRAMACIÓN LINEAL Colegio Ntra. Sra. de Monte-Sión Departamento de Ciencias Asignatura: Matemáticas Aplicadas a las CCSS II Profesor: José Mª Almudéver Alemany TEMA 3. PROGRAMACIÓN LINEAL. Inecuaciones lineales con dos

Más detalles

PROBLEMAS DE PROGRAMACIÓN LINEAL.

PROBLEMAS DE PROGRAMACIÓN LINEAL. Observación: Para resolver correctamente los ejercicios, hay que responder a todos sus apartados sobre lo que se pregunta. No obstante, hay soluciones a apartados que no se han dado y que se deja al alumno

Más detalles

Programación lineal -1-

Programación lineal -1- Programación lineal 1. (j99) Los alumnos de un instituto pretenden vender dos tipos de lotes, A y B, para sufragarse los gastos del viaje de estudios. Cada lote de tipo A consta de una caja de mantecados

Más detalles

1.- Dibuja la región del plano determinada por estas desigualdades: Existe alguna restricción que se pueda suprimir sin que varíe la solución?

1.- Dibuja la región del plano determinada por estas desigualdades: Existe alguna restricción que se pueda suprimir sin que varíe la solución? HOJA DE EJERCICIOS 1.- Dibuja la región del plano determinada por estas desigualdades: x + y 4x + y 0 y 0 x + y 5, y calcula el máximo de la función F( x, y) = x + y en esta región. (Sol. (-1,4)). Existe

Más detalles

EJERCICIOS. Calcula la producción diaria de los artículos A y B que maximiza el beneficio

EJERCICIOS. Calcula la producción diaria de los artículos A y B que maximiza el beneficio EJERCICIOS EJERCICIO 1 En una granja de pollos se da una dieta "para engordar" con una composición mínima de 15 unidades de una sustancia A y otras 15 de una sustancia B. En el mercado solo se encuentran

Más detalles

PROBLEMARIO DE ALGEBRA LINEAL. EJERCICIO 1 Grafica los siguientes sistemas de ecuaciones lineales con dos incógnitas y determina su solución.

PROBLEMARIO DE ALGEBRA LINEAL. EJERCICIO 1 Grafica los siguientes sistemas de ecuaciones lineales con dos incógnitas y determina su solución. PROBLEMARIO DE ALGEBRA LINEAL EJERCICIO Grafica los siguientes sistemas de ecuaciones lineales con dos incógnitas y determina su solución. a) X Y = X + Y = 7 a) X = 4, Y = 3 b) x + 8 = y + y 4 = x + b)

Más detalles

Matemáticas aplicadas a las ciencias sociales II PL

Matemáticas aplicadas a las ciencias sociales II PL Matemáticas aplicadas a las ciencias sociales II PL 1) Una imprenta local edita periódicos y revistas. Para cada periódico necesita un cartucho de tinta negra y otro de color, y para cada revista uno de

Más detalles

x + y 4 2x + 3y 10 4x + 2y 12 x 0, y 0

x + y 4 2x + 3y 10 4x + 2y 12 x 0, y 0 PRUEBAS DE ACCESO A LA UNIVERSIDAD PROBLEMAS DE PROGRAMACIÓN LINEAL JUNIO 2000. OPCIÓN B. Una empresa especializada en la fabricación de mobiliario para casas de muñecas, produce cierto tipo de mesas y

Más detalles

EJERCICIOS RESUELTOS DE PROGRAMACIÓN LINEAL

EJERCICIOS RESUELTOS DE PROGRAMACIÓN LINEAL EJERCICIOS RESUELTOS DE PROGRAMACIÓN LINEAL 1.- Un estudiante reparte propaganda publicitaria en su tiempo libre. La empresa A le paga 0,05 por impreso repartido y la empresa B, con folletos más grandes,

Más detalles

02 Ejercicios de Selectividad Programación Lineal

02 Ejercicios de Selectividad Programación Lineal Ejercicios propuestos en 009 1.- [009-1-B-1] En un examen se propone el siguiente problema: F x, y = 6x+ 3y en la región Indique dónde se alcanza el mínimo de la función determinada por las restricciones

Más detalles

Experimentación con Descartes na Aula. Galicia 2008

Experimentación con Descartes na Aula. Galicia 2008 Experimentación con Descartes na Aula. Galicia 2008 Follas de traballo Se traballará coas páxinas web da unidade á vez que se completan as follas de traballo, e se realizarán as actividades propostas que

Más detalles

Modelo 2014. Problema 2A.- Septiembre 2012. Ejercicio 1A. Septiembre 2010. F.M. Ejercicio 1A. Septiembre 2010. F.G. Ejercicio 1B.

Modelo 2014. Problema 2A.- Septiembre 2012. Ejercicio 1A. Septiembre 2010. F.M. Ejercicio 1A. Septiembre 2010. F.G. Ejercicio 1B. Modelo 2014. Problema 2A.- (Calificación máxima: 2 puntos) Un astillero recibe un encargo para reparar barcos de la flota de un armador, compuesta por pesqueros de 500 toneladas y yates de 100 toneladas.

Más detalles

PROGRAMACIÓN LINEAL. Ejemplo a) Dibuja el recinto formado por los puntos que cumplen las siguientes condiciones:

PROGRAMACIÓN LINEAL. Ejemplo a) Dibuja el recinto formado por los puntos que cumplen las siguientes condiciones: PROGRAMACIÓN LINEAL CONTENIDOS: Desigualdades e inecuaciones. Sistemas lineales de inecuaciones. Recintos convexos. Problemas de programación lineal. Terminología básica. Resolución analítica. Resolución

Más detalles

EJERCICIOS METODO SIMPLEX

EJERCICIOS METODO SIMPLEX EJERCICIOS METODO SIMPLEX 1. Un empresario pretende fabricar dos tipos de congeladores denominados A y B. Cada uno de ellos debe pasar por tres operaciones antes de su comercialización: Ensamblaje, pintado

Más detalles

PROGRAMACIÓN LINEAL-SELECTIVIDAD (MADRID)

PROGRAMACIÓN LINEAL-SELECTIVIDAD (MADRID) PROGRAMACIÓN LINEAL-SELECTIVIDAD (MADRID) 1.- (Junio 99). Los alumnos de un instituto pretenden vender dos tipos de lotes, A y B, para sufragar los gastos del viaje de estudios. Cada lote de tipo A consta

Más detalles

Programación lineal. 2.1 Problemas PAU

Programación lineal. 2.1 Problemas PAU 1 Programación lineal 2.1 Problemas PAU Junio 94: Un fabricante de coches lanza una oferta especial en dos de sus modelos, ofreciendo el modelo A a un precio de 1,5 millones de ptas. y el modelo B a 2

Más detalles

ÁLGEBRA. Nota: Los sistemas de ecuaciones lineales se deben resolver por el método de Gauss.

ÁLGEBRA. Nota: Los sistemas de ecuaciones lineales se deben resolver por el método de Gauss. Pruebas de Acceso a la Universidad de Zaragoza. Matemáticas aplicadas a las Ciencias Sociales. ÁLGEBRA Junio 1994. Un aficionado a la Bolsa invirtió.000.000 de pesetas en acciones de tres empresas A, B

Más detalles

A 1 g. 5 g 3 g 2 euros. 2 g

A 1 g. 5 g 3 g 2 euros. 2 g 1. [2014] [EXT-A] Una fábrica produce dos tipos de bombillas: halógenas y LED. La capacidad máxima diaria de fabricación es de 1000, entre bombillas halógenas y LED, si bien no puede fabricar más de 800

Más detalles

MAT. APLICADAS A LAS CIENCIAS SOCIALES II - P.A.E.U. ÁLGEBRA LINEAL

MAT. APLICADAS A LAS CIENCIAS SOCIALES II - P.A.E.U. ÁLGEBRA LINEAL MAT. APLICADAS A LAS CIENCIAS SOCIALES II - P.A.E.U. ÁLGEBRA LINEAL. - Maximizar y minimizar la función T(x,y)= -x+y, sujeta a las restricciones: y x 4, y+x 4, x, y. Sol.: Mín 3 3, ; Máx. no tiene.- Una

Más detalles

MATEMÁTICAS PARA LA ECONOMIA II G.E.C.O. Curso 2012/2013

MATEMÁTICAS PARA LA ECONOMIA II G.E.C.O. Curso 2012/2013 MATEMÁTICAS PARA LA ECONOMIA II G.E.C.O. Curso 2012/2013 Relación de Ejercicios N o 3 1. Resolver los siguientes programas lineales primero gráficamente y después por el método del simplex. (a) Z = x +

Más detalles

Maximizar Z = 2X1 + X2 + 0,75X3 + 0,5X4 SOLUCION AL PRIMER PROBLEMA DE SIMPLEX

Maximizar Z = 2X1 + X2 + 0,75X3 + 0,5X4 SOLUCION AL PRIMER PROBLEMA DE SIMPLEX Primer problema de SIMPLEX (incluye un modelo de Wilson). Los alumnos de 1º de LADE de la Facultad de Ciencias Económicas y Empresariales de Badajoz deciden constituir una empresa (LADE, S.A.), dedicada

Más detalles

Ejercicios de Programación Lineal

Ejercicios de Programación Lineal Ejercicios de Programación Lineal Investigación Operativa Ingeniería Informática, UCM Curso 8/9 Una compañía de transporte dispone de camiones con capacidad de 4 libras y de 5 camiones con capacidad de

Más detalles

b) Debe vender 20 coches de tipo A y 10 coches de tipo B El importe es de 50 millones de pesetas.

b) Debe vender 20 coches de tipo A y 10 coches de tipo B El importe es de 50 millones de pesetas. Junio 94 a) Puede fabricar: 12/7 de modelo a y 12/7 del modelo B 10 del modelo A y 10 del B 20 del modelo A y 10 del B 20 del modelo A y 0 del B 4 del modelo A y 0 del B b) Debe vender 20 coches de tipo

Más detalles

Curso ON LINE Tema 5 MATRICES LITERALES

Curso ON LINE Tema 5 MATRICES LITERALES urso ON LINE Tema 5 1 2 3 4 5 MATRIES LITERALES Una fábrica de automóviles dispone en el mes de junio de tres modelos: económico, de lujo y deportivo. En determinada ciudad la firma posee tres concesionarios,

Más detalles

www.academiacae.com!!info@academiacae.com!!91.501.36.88!!28007!madrid!

www.academiacae.com!!info@academiacae.com!!91.501.36.88!!28007!madrid! PROGRAMACIÓNLINEAL 1.0septiembre1995 UnaempresadeautomóvilestienedosplantasPyQdemontajedevehículosenlasqueproducetresmodelosA,ByC.Dela plantapsalensemanalmente10unidadesdelmodeloa,30delby15delc,ydelaq,20unidadesdelmodeloa,20delby70del

Más detalles

SISTEMAS DE ECUACIONES LINEALES. ESTUDIO DE LA COMPATIBILIDAD DE SISTEMAS

SISTEMAS DE ECUACIONES LINEALES. ESTUDIO DE LA COMPATIBILIDAD DE SISTEMAS 1 SISTEMAS DE ECUACIONES LINEALES. ESTUDIO DE LA COMPATIBILIDAD DE SISTEMAS 102. PAU Universidad de Oviedo Fase General OPCIÓN A junio 2010 Dos amigos, Ana y Nicolás, tienen en total 60 euros. Además se

Más detalles

TP1 Programación Lineal - 2009

TP1 Programación Lineal - 2009 Problema Trabajo Práctico Nº 1 de cerdo. Una carnicería 1 La carne prepara vaca hamburguesas contiene 80% con de carne una combinación y 20% de grasa de carne y le molida cuesta de $5 vaca el kilo, y carne

Más detalles

Programación lineal. En esta Unidad didáctica nos proponemos alcanzar los objetivos siguientes:

Programación lineal. En esta Unidad didáctica nos proponemos alcanzar los objetivos siguientes: UNIDAD 3 Programación lineal a programación lineal es parte L de una rama de las matemáticas relativamente joven llamada investigación operativa. La idea básica de la programación lineal es la de optimizar,

Más detalles

PROGRAMACIÓN LINEAL. y x Ì 2. Representa, de forma análoga, las siguientes inecuaciones: a) x +5y > 10 b) x + 2y Ì 16 c) 2x + y Ì 20.

PROGRAMACIÓN LINEAL. y x Ì 2. Representa, de forma análoga, las siguientes inecuaciones: a) x +5y > 10 b) x + 2y Ì 16 c) 2x + y Ì 20. PROGRAMACIÓN LINEAL Página 99 REFLEXIONA Y RESUELVE Resolución de inecuaciones lineales Para representar y x Ì 2, representa la recta y x = 2. Después, para decidir a cuál de los dos semiplanos corresponde

Más detalles

EJERCICIOS PROPUESTOS. Mide el segmento AB eligiendo como cantidad de referencia otro segmento de menor longitud.

EJERCICIOS PROPUESTOS. Mide el segmento AB eligiendo como cantidad de referencia otro segmento de menor longitud. 7 SISTEMA DE MEDIDAS EJERCICIOS PROPUESTOS 7.1 Mide el segmento AB eligiendo como cantidad de referencia otro segmento de menor longitud. B A u El segmento AB contiene 5 veces a u. Luego mide 5u. 7.2 Observa

Más detalles

Tipo de máquina Tiempo disponible. (h/maq. Por semana) Fresadora 500 Torno 350 Rectificadora 150

Tipo de máquina Tiempo disponible. (h/maq. Por semana) Fresadora 500 Torno 350 Rectificadora 150 Ejercicios Tema 1. 1.- Utilizar el procedimiento gráfico para resolver los siguientes P.L. a) Max z = 10x 1 + 20x 2 s.a x 1 + 2x 2 15 x 1 + x 2 12 5x 1 + 3x 2 45 x 1,x 2 0 b) Max z = 2x 1 + x 2 s.a. x

Más detalles

Unidad 2 Método gráfico de solución

Unidad 2 Método gráfico de solución Unidad 2 Método gráfico de solución Los problemas de programación lineal (pl) que sólo tengan dos variables de decisión pueden resolverse gráficamente, ya que, como se ha visto en los Antecedentes, una

Más detalles

Problemas de inecuaciones Programación lineal - 2. MasMates.com Colecciones de ejercicios

Problemas de inecuaciones Programación lineal - 2. MasMates.com Colecciones de ejercicios 1. En un taller de carpintería se fabrican mesas de cocina de formica y de madera. Las de formica se venden a 210 euros y las de madera a 280 euros. La maquinaria del taller condiciona la producción, por

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 3: PROGRAMACIÓN LINEAL

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 3: PROGRAMACIÓN LINEAL PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2002 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 3: PROGRAMACIÓN LINEAL Junio, Ejercicio 1, Opción B Reserva 1, Ejercicio 1, Opción B Reserva 2, Ejercicio

Más detalles

Fundamentos de Investigación de Operaciones Investigación de Operaciones 1

Fundamentos de Investigación de Operaciones Investigación de Operaciones 1 Fundamentos de Investigación de Operaciones Investigación de Operaciones 1 Formulación de Modelos de Programacón Lineal 25 de julio de 2003 La (LP es una herramienta para resolver problemas de optimización

Más detalles

PROGRAMACIÓN LINEAL. Página 102. Página 103

PROGRAMACIÓN LINEAL. Página 102. Página 103 4 PROGRAMACIÓN LINEAL Página 0 Problema Para representar y x, representa la recta y x =. Después, para decidir a cuál de los dos semiplanos corresponde la inecuación, toma un punto cualquiera exterior

Más detalles

José Jaime Mas Bonmatí E-Mail: josejaime@ieslaasuncion.org IES LA ASUNCIÓN http://www.ieslaasuncion.org

José Jaime Mas Bonmatí E-Mail: josejaime@ieslaasuncion.org IES LA ASUNCIÓN http://www.ieslaasuncion.org 1. (PAU junio 2003 A1). Dada la siguiente ecuación matricial: 3 2 x 10 x 2 1 y 6 y 0 1 z 3 obtener de forma razonada los valores de x, y, z. 2. (PAU junio 2003 A2). Una compañía fabrica y vende dos modelos

Más detalles

Unidad 1 Modelos de programación lineal

Unidad 1 Modelos de programación lineal Unidad 1 Modelos de programación lineal La programación lineal comenzó a utilizarse prácticamente en 1950 para resolver problemas en los que había que optimizar el uso de recursos escasos. Fueron de los

Más detalles

Problemas de inecuaciones Programación lineal - 1. MasMates.com Colecciones de ejercicios

Problemas de inecuaciones Programación lineal - 1. MasMates.com Colecciones de ejercicios 1. Cierta sala de espectáculos tiene una capacidad máxima de 1500 personas, entre adultos y niños; el número de niños asistentes no puede superar los 600. El precio de la entrada a una sesión de un adulto

Más detalles

EJERCICIOS DE PROGRAMACIÓN LINEAL

EJERCICIOS DE PROGRAMACIÓN LINEAL EJERCICIOS DE PROGRAMACIÓN LINEAL 1. Disponemos de 210.000 euros para invertir en bolsa. Nos recomiendan dos tipos de acciones. Las del tipo A, que rinden el 10% y las del tipo B, que rinden el 8%. Decidimos

Más detalles

PROGRAMACIÓN LINEAL. Solución: Sea: x = cantidad invertida en acciones A y = cantidad invertida en acciones B. La función objetivo es: x y + 100 100

PROGRAMACIÓN LINEAL. Solución: Sea: x = cantidad invertida en acciones A y = cantidad invertida en acciones B. La función objetivo es: x y + 100 100 PROGRAMACIÓN LINEAL 1. A una persona le tocan 10 millones de pesos en una lotería y le aconsejan que las invierta en dos tipos de acciones, A y B. Las de tipo A tienen más riesgo pero producen un beneficio

Más detalles

OPTIMIZACIÓN DE SISTEMAS I

OPTIMIZACIÓN DE SISTEMAS I UNIVERSIDAD TECNOLÓGICA DEL PERÚ Vicerrectorado de Investigación OPTIMIZACIÓN DE SISTEMAS I TINS Básicos INGENIERÍA INDUSTRIAL, INGENIERÍA DE SISTEMAS TEXTOS DE INSTRUCCIÓN BÁSICOS (TINS) / UTP Lima -

Más detalles

MÉTODOS MATEMÁTICOS DE LA ECONOMÍA

MÉTODOS MATEMÁTICOS DE LA ECONOMÍA UNIVERSIDAD DE VALLADOLID DEPARTAMENTO DE ECONOMÍA APLICADA SUBSECCIÓN DE MATEMÁTICAS MÉTODOS MATEMÁTICOS DE LA ECONOMÍA Economía Derecho Administración y Dirección de Empresas RELACIÓN DE PROBLEMAS DE

Más detalles

TALLER 2: Programación Lineal-Planteamiento de problemas con dos variables

TALLER 2: Programación Lineal-Planteamiento de problemas con dos variables TALLER 2: Programación Lineal-Planteamiento de problemas con dos variables En cada caso plantear el problema y encontrar la solución por el método grafico. Utilice el software QSB para verificar la solución.

Más detalles

CANTABRIA / JUNIO 04. LOGSE / MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES / ÁLGEBRA / BLOQUE 1 / OPCIÓN A

CANTABRIA / JUNIO 04. LOGSE / MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES / ÁLGEBRA / BLOQUE 1 / OPCIÓN A CANTABRIA / JUNIO 04. LOGSE / MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES / ÁLGEBRA / BLOQUE 1 / OPCIÓN A BLOQUE 1 OPCIÓN A Un fabricante de coches lanza una oferta especial en dos de sus modelos, ofreciendo

Más detalles

PRUEBAS DE ACCESO A LA UNIVERSIDAD DE EXTREMADURA. MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II.

PRUEBAS DE ACCESO A LA UNIVERSIDAD DE EXTREMADURA. MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II. PRUEBAS DE ACCESO A LA UNIVERSIDAD DE EXTREMADURA. MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II. Problemas propuestos en las Pruebas de Acceso a la UEX (994-9). Ordenadas por temas. Mónico Cañada Gallardo

Más detalles

Ejercicios de Matemáticas

Ejercicios de Matemáticas Ejercicios de Matemáticas 82. Me encargaron un trabajo. Ayer realicé la mitad del mismo y hoy 1/3 del total. Qué fracción del trabajo llevo realizada? 83. De un depósito que contiene 240 litros de agua

Más detalles

Unidad 8. Análisis y evaluación de inversiones

Unidad 8. Análisis y evaluación de inversiones Unidad 8. Análisis y evaluación de inversiones 0. ÍNDICE. 1. CONCEPTO DE INVERSIÓN. 2. TIPOS DE INVERSIÓN. 2.1. Atendiendo a su período de vinculación con la empresa. 2.2. Según su materialización. 2.3.

Más detalles

Unidad 4: Distribuciones de Probabilidad (Discretas y Continuas)

Unidad 4: Distribuciones de Probabilidad (Discretas y Continuas) Unidad 4: Distribuciones de Probabilidad (Discretas y Continuas) Ejercicio 4 1 Una persona vende automóviles nuevos para una empresa. Generalmente negocia el mayor número de autos los sábados. Ha establecido

Más detalles

Programación Lineal Continua/ Investigación Operativa. EJERCICIOS DE INVESTIGACIÓN OPERATIVA. Hoja 1

Programación Lineal Continua/ Investigación Operativa. EJERCICIOS DE INVESTIGACIÓN OPERATIVA. Hoja 1 EJERCICIOS DE INVESTIGACIÓN OPERATIVA. Hoja 1 1. Una empresa que fabrica vehículos quiere determinar un plan de producción semanal. Esta empresa dispone de 5 fábricas que producen distintos elementos del

Más detalles

Problemas de Programación Entera

Problemas de Programación Entera Problemas de Programación Entera 1. Se está estudiando la manufactura de tres nuevos productos textiles, que denominaremos P1, P2 y P3. Cada producto requiere para su producción el alquiler de una máquina,

Más detalles

Números y operaciones

Números y operaciones 1 Números y operaciones Rosa y Julián tienen en su granja ciento veinte vacas, ochenta de leche y el resto de engorde. Además, crían tres cerdos, cuatro pavos y el triple de gallinas que de pavos. También,

Más detalles

CONTENIDOS 0.- MAPA CONCEPTUAL DE LA UNIDAD... 1 1.- FORMULACIÓN DEL PROBLEMA... 2 2.- RESOLUCIÓN DEL PROBLEMA...

CONTENIDOS 0.- MAPA CONCEPTUAL DE LA UNIDAD... 1 1.- FORMULACIÓN DEL PROBLEMA... 2 2.- RESOLUCIÓN DEL PROBLEMA... CONTENIDOS 0.- MAPA CONCEPTUAL DE LA UNIDAD... 1 1.- FORMULACIÓN DEL PROBLEMA... 2 2.- RESOLUCIÓN DEL PROBLEMA... 2 2.1. NATURALEZA DE LAS RESTRICCIONES... 2 2.2. DÓNDE ESTÁ Y CÓMO SE ENCUENTRA LA SOLUCIÓN...

Más detalles

UD10: LAS INVERSIONES DE LA EMPRESA

UD10: LAS INVERSIONES DE LA EMPRESA UD10: LAS INVERSIONES DE LA EMPRESA 1. El Sr. García ha comprado un apartamento por 100.000 y espera venderlo dentro de un año en 132.000. a) Cuál sería el TIR de esta inversión? (1 punto) b) Si esta rentabilidad

Más detalles

PROGRAMACIÓN LINEAL. a) Dibuja dicha región y determina sus vértices. b) Calcula el mínimo de la función objetivo z = 4x + 5y, en el recinto anterior.

PROGRAMACIÓN LINEAL. a) Dibuja dicha región y determina sus vértices. b) Calcula el mínimo de la función objetivo z = 4x + 5y, en el recinto anterior. PROGRAMACIÓN LINEAL 1. La región factible de un problema de programación lineal es la intersección de primer cuadrante con los tres semiplanos definidos por las siguientes inecuaciones: x y x y x y + 1

Más detalles

Matemáticas Aplicadas a. 2º Bachillerato. Capítulo 4: Programación lineal. LibrosMareaVerde.tk www.apuntesmareaverde.org.es

Matemáticas Aplicadas a. 2º Bachillerato. Capítulo 4: Programación lineal. LibrosMareaVerde.tk www.apuntesmareaverde.org.es Matemáticas Aplicadas a las Ciencias Sociales II. 2º Bachillerato. Capítulo 4: Programación lineal Autores: Leticia González Pascual y Álvaro Valdés Menéndez 101 Índice 1. INECUACIONES LINEALES CON DOS

Más detalles

Soluciones a las actividades

Soluciones a las actividades Soluciones a las actividades BLOQUE I Álgebra 1. Sistemas lineales 2. Matrices 3. Determinantes 4. Sistemas lineales con parámetros 1 Sistemas lineales 1. Sistemas de ecuaciones lineales Piensa y calcula

Más detalles

Contenido Orientativo Matemáticas 11 EE-EA-EC, Libre Escolaridad FACES-ULA

Contenido Orientativo Matemáticas 11 EE-EA-EC, Libre Escolaridad FACES-ULA Contenido Orientativo Matemáticas 11 EE-EA-EC, Libre Escolaridad FACES-ULA El siguiente documento tiene como objetivo proporcionar a los alumnos del curso de matemáticas 11, por la modalidad de libre escolaridad,

Más detalles

EJERCICIOS. Ejercicio 1.- (P.L.I.) Representar el conjunto de puntos que satisfacen simultáneamente las inecuaciones: x 2; x 2; y 1 (León.

EJERCICIOS. Ejercicio 1.- (P.L.I.) Representar el conjunto de puntos que satisfacen simultáneamente las inecuaciones: x 2; x 2; y 1 (León. EJERIIOS Ejercicio 1.- (P.L.I.) Representar el conjunto de puntos que satisfacen simultáneamente las inecuaciones: x 2; x 2; y 1 (León. Junio 1990) 1-2 0 2 Ejercicio 2.- (P.L.I.) escribir mediante un sistema

Más detalles

11. Pruebas de acceso. a Ciclos Formativos

11. Pruebas de acceso. a Ciclos Formativos 11. Pruebas de acceso a Ciclos Formativos Ámbito científico 1. Septiembre 1997 2. Septiembre 1998 3. Septiembre 1999 4. Septiembre 2000 5. Junio 2001 6. Junio 2002 7. Mayo 2003 8. Mayo 2004 204 Pruebas

Más detalles

Respuesta: conviene sembrar maíz para maximizar el Beneficio.

Respuesta: conviene sembrar maíz para maximizar el Beneficio. RIESGO PROBLEMA N 1: Un agricultor debe decidir entre sembrar trigo o maíz en su campo. Suponiendo que los únicos estados naturales posibles son tiempo bueno, variable y malo, con probabilidades de 0.20,

Más detalles

PROBLEMAS DE PROGRAMACIÓN LINEAL

PROBLEMAS DE PROGRAMACIÓN LINEAL PROBLEMAS DE PROGRAMACIÓN LINEAL A.- Problemas generales B.- Problemas con porcentajes C.- Problemas de dietas D.- Problemas para profundizar A.- PROBLEMAS GENERALES Ejercicio 1.- En una fábrica se construyen

Más detalles

Ejercicios y problemas

Ejercicios y problemas Ejercicios problemas Problemas 28. Un granjero desea crear una granja de pollos de dos razas,a B. Dispone de 9 000 para invertir de un espacio con una capacidad limitada para 7 000 pollos. Cada pollo de

Más detalles

3 = x PROPORCIONALIDAD. 01 Apoyándote en la definición, escribe alguna razón. 02 Escribe 2 números mayores de 23 y menores que 31 cuya razón sea 4/5

3 = x PROPORCIONALIDAD. 01 Apoyándote en la definición, escribe alguna razón. 02 Escribe 2 números mayores de 23 y menores que 31 cuya razón sea 4/5 IES PROF. JUAN BAUTISTA EL VISO DEL ALCOR TEMA 4.- Proporcionalidad. Ejercicios de Repaso y ampliación. PROPORCIONALIDAD 01 Apoyándote en la definición, escribe alguna razón 02 Escribe 2 números mayores

Más detalles

Problemas de proporcionalidad

Problemas de proporcionalidad Problemas de proporcionalidad REGLA DE TRES SIMPLE DIRECTA E INVERSA. 1.- En 50 litros de agua de mar hay 1.300 g. de sal. Cuántos litros hacen falta para 5.200 g. de sal? 2.- Un coche gasta 5 litros de

Más detalles

Programación Lineal. Programación Lineal

Programación Lineal. Programación Lineal Programación Lineal Modelo General Max Z = c 1 + C 2 +... c n, s.a. a 11 + a 12 +... + a 1n b 1 a 21 + a 22 +... + a 2n b 2.. a m1 + a m2 +... + a mn b m 0, 0, x 3 0,..., 0 Programación Lineal Interpretación

Más detalles

Problemas de ecuaciones Colección B.2. MasMates.com Colecciones de ejercicios

Problemas de ecuaciones Colección B.2. MasMates.com Colecciones de ejercicios 1. Calcula las edades de Carolina, Miguel y Francisco, sabiendo que en total suman 54 años, la edad de Francisco es igual al doble de la de Miguel y la de Carolina es inferior en 6 años a la suma de las

Más detalles

1. Calcula las edades de Ángel y Francisco, sabiendo que en total suman 28 años y la edad de Francisco excede en 12 años a la de Ángel.

1. Calcula las edades de Ángel y Francisco, sabiendo que en total suman 28 años y la edad de Francisco excede en 12 años a la de Ángel. 1. Calcula las edades de Ángel y Francisco, sabiendo que en total suman 28 años y la edad de Francisco excede en 12 años a la de Ángel. 2. Alba y Ana han comprado un regalo a su madre. Indica cuánto ha

Más detalles

Programación Lineal. Ejercicio nº 1.- a) Representa gráficamente las soluciones de la inecuación: 2x y 3

Programación Lineal. Ejercicio nº 1.- a) Representa gráficamente las soluciones de la inecuación: 2x y 3 Programación Lineal Ejercicio nº.- a) Representa gráficamente las soluciones de la inecuación: b) Averigua cuál es la inecuación cuas soluciones corresponden al siguiente semiplano: Ejercicio nº.- a) Representa

Más detalles

El fabricante desea planificar el proceso de producción y para ello establece las siguientes metas ordenadas por orden de importancia:

El fabricante desea planificar el proceso de producción y para ello establece las siguientes metas ordenadas por orden de importancia: Titulación: Ingeniero en Organización Industrial Asignatura: Investigación Operativa Curso: 2010/2011 RECOPILACIÓN EXÁMENES PRÁCTICAS Programación Multiobjetivo 1. [JUNIO 2010] (4.5 puntos) En el proceso

Más detalles

PARTE 2º TEMA 4.- PROBLEMAS DE SELECTIVIDAD DE ECONOMÍA DE LA EMPRESA 1/114 3.01_03 3.01_07 PARTE 3ª TEMA 9.-

PARTE 2º TEMA 4.- PROBLEMAS DE SELECTIVIDAD DE ECONOMÍA DE LA EMPRESA 1/114 3.01_03 3.01_07 PARTE 3ª TEMA 9.- PROBLEMAS DE SELECTIVIDAD DE ECONOMÍA DE LA EMPRESA 1/114 PARTE 2º TEMA 4.- 3.01_03 3.01_07 PARTE 3ª TEMA 9.- 2.01_03 2.02_03 2.03_03 2.04_03 2.05_03 2.06_03 2.07_03 2.08_03 2.09_03 2.10_03 2.11_03 2.12_03

Más detalles

OPTIMIZACIÓN Y SIMULACIÓN PARA LA EMPRESA. Tema 2 Programación Lineal

OPTIMIZACIÓN Y SIMULACIÓN PARA LA EMPRESA. Tema 2 Programación Lineal OPTIMIZACIÓN Y SIMULACIÓN PARA LA EMPRESA Tema 2 Programación Lineal ORGANIZACIÓN DEL TEMA Sesiones: Introducción, definición y ejemplos Propiedades y procedimientos de solución Interpretación económica

Más detalles

CONCEPTOS BÁSICOS DE PROGRAMACIÓN LINEAL.-

CONCEPTOS BÁSICOS DE PROGRAMACIÓN LINEAL.- PROGRAMACIÓN LINEAL CONCEPTOS BÁSICOS DE PROGRAMACIÓN LINEAL.- 1. Definición. Técnica de programación matemática para resolver problemas de optimización de recursos (maximización, minimización) cuando

Más detalles

de 75 cm. Cuando la primera ha dado 300 vueltas, cuántas vueltas habrá dado la segunda?

de 75 cm. Cuando la primera ha dado 300 vueltas, cuántas vueltas habrá dado la segunda? 1. Seis personas pueden vivir en un hotel durante 12 días por 792. Cuánto costará el hotel a 15 personas durante ocho días? 6 personas 12 días 792 15 personas 8 días x A más personas más precio. Directa.

Más detalles

CASTILLA-LA MANCHA / SEPTIEMBRE 2002 LOGSE / ECONOMÍA Y ORGANIZACIÓN DE EMPRESAS / EXAMEN COMPLETO

CASTILLA-LA MANCHA / SEPTIEMBRE 2002 LOGSE / ECONOMÍA Y ORGANIZACIÓN DE EMPRESAS / EXAMEN COMPLETO Esta prueba consta de tres bloques: en el primero el alumno elegirá cinco preguntas de ocho posibles; en el segundo bloque, elegirá dos temas de cuatro posibles; y en el tercer bloque, el alumno elegirá

Más detalles

FUNDAMENTOS DE ADMINISTRACIÓN Y GESTIÓN Teoría y ejercicios

FUNDAMENTOS DE ADMINISTRACIÓN Y GESTIÓN Teoría y ejercicios FUNDAMENTOS DE ADMINISTRACIÓN Y GESTIÓN Teoría y ejercicios 2ª edición JUAN PALOMERO con la colaboración de CONCEPCIÓN DELGADO Economistas Catedráticos de Secundaria ---------------------------------------------------

Más detalles

TAREA N o 1 Investigación de Operaciones

TAREA N o 1 Investigación de Operaciones TAREA N o 1 Investigación de Operaciones Profesores Víctor Leiva - Carolina Marchant Ingeniería en Estadística, Universidad de Valparaíso Valparaíso, 13 de diciembre de 2011 Ejercicio 1: Un expendio de

Más detalles

PROBLEMAS. 3. Mi abuela había guardado 120 monedas de una peseta. Cuánto le falta para tener 30 duros?.

PROBLEMAS. 3. Mi abuela había guardado 120 monedas de una peseta. Cuánto le falta para tener 30 duros?. NOMBRE:... NIVEL:... FECHA:... 1. De La Laguna a Los Cristianos hay 82 Km. Una guagua que sale de La Laguna a las 10 horas y llega a Los Cristianos a las 12 horas, qué velocidad ha desarrollado? 2. Tres

Más detalles

EJERCICIOS RESUELTOS DE PROGRAMACIÓN LINEAL USANDO LA HOJA DE CÁLCULO EXCEL

EJERCICIOS RESUELTOS DE PROGRAMACIÓN LINEAL USANDO LA HOJA DE CÁLCULO EXCEL EJERCICIOS RESUELTOS DE PROGRAMACIÓN LINEAL USANDO LA HOJA DE CÁLCULO EXCEL (Ejercicios propuestos por los estudiantes) (No tienen un orden establecido por dificultad o por tipo de problemas, se incluyen

Más detalles

Actividades Complementarias.

Actividades Complementarias. 4.1. Balanceo de Líneas. Unidad IV Monitoreo y Control de Operaciones El análisis de las líneas de producción es el foco central del análisis de disposiciones físicas por productos. El diseño del producto

Más detalles

ELABORANDO NUESTRO PROYECTO PRODUCTIVO

ELABORANDO NUESTRO PROYECTO PRODUCTIVO ELABORANDO NUESTRO PROYECTO PRODUCTIVO PROYECTO: FORTALECIMIENTO DE CAPACIDADES DE MUJERES EMPRENDEDORAS DE ORGANIZACIONES SOCIALES SAN PEDRO DE LLOC, PROVINCIA DE PACASMAYO, DEPARTAMENTO DE LA LIBERTAD

Más detalles

CAPITULO II. Estudio Técnico

CAPITULO II. Estudio Técnico CAPITULO II Estudio Técnico 55 2.1 LOCALIZACIÓN DEL PROYECTO Para determinar la ubicación ideal para el restaurante de comida dietética se tomaron en cuenta diferentes zonas del área de San Salvador principalmente

Más detalles

COLEGIO SAN FRANCISCO DE SALES - 2012 - Prof. Cecilia Galimberti MATEMÁTICA FINANCIERA GUÍA N 1 - INTERÉS SIMPLE

COLEGIO SAN FRANCISCO DE SALES - 2012 - Prof. Cecilia Galimberti MATEMÁTICA FINANCIERA GUÍA N 1 - INTERÉS SIMPLE COLEGIO SAN FRANCISCO DE SALES - 2012 - Prof. Cecilia Galimberti MATEMÁTICA FINANCIERA 4 AÑO A GUÍA N 1 - INTERÉS SIMPLE La Matemática Financiera es la aplicación de la matemática a las finanzas. Es la

Más detalles

Programación Lineal: Modelos PLE

Programación Lineal: Modelos PLE Programación Lineal: Modelos PLE CCIR / Matemáticas euresti@itesm.mx CCIR / Matemáticas Programación Lineal: Modelos PLE euresti@itesm.mx 1 / 35 Introduccion Introduccion En esta lectura se verán cómo

Más detalles

Carmen Puerta Juan Antonio Rivas. www.argitalpenak.ehu.es ARGITALPEN ZERBITZUA SERVICIO EDITORIAL ISBN: 978-84-9860-439-9

Carmen Puerta Juan Antonio Rivas. www.argitalpenak.ehu.es ARGITALPEN ZERBITZUA SERVICIO EDITORIAL ISBN: 978-84-9860-439-9 Exámenes resueltos de Matemáticas para Economistas IV economistas Carmen Puerta Juan Antonio Rivas ARGITALPEN ZERBITZUA SERVICIO EDITORIAL www.argitalpenak.ehu.es ISBN: 978-84-9860-439-9 Exámenes resueltos

Más detalles

MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II JUNIO 2004

MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II JUNIO 2004 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II JUNIO 2004 Problema 1. Dadas las matrices: 4 A = 1 0 1 1 B = 2 2 0 y 2 C = 1 0 2 Calcular la matriz X que verifica la ecuación AXB =2C Problema 2. Un banco

Más detalles

DEPARTAMENTO DE MATEMÁTICAS

DEPARTAMENTO DE MATEMÁTICAS PROPUESTA DE ACTIVIDADES PARA LA PRUEBA EXTRAORDINARIA DE SEPTIEMBRE MATEMÁTICAS SEGUNDO CURSO EDUCACIÓN SECUNDARIA OBLIGATORIA Curso 01/01 DEPARTAMENTO DE MATEMÁTICAS NOMBRE GRUPO TEMA 1 : LOS NÚMEROS

Más detalles

Tema 4: Problemas Aritméticos

Tema 4: Problemas Aritméticos Tema 4: Problemas Aritméticos 4.1 Proporcionalidad simple. Vamos a en primer lugar a responder a dos preguntas: Cuándo se dice que dos magnitudes son directamente proporcionales? Se dice que son directamente

Más detalles

SOLUCIONES. Variables: Función objetivo: F(x,y) = 500x + 2000y. Resumen de datos. A B Jazmín 15% 30% 60 Alcohol 20% 15% 50 500 pts 2000 pts

SOLUCIONES. Variables: Función objetivo: F(x,y) = 500x + 2000y. Resumen de datos. A B Jazmín 15% 30% 60 Alcohol 20% 15% 50 500 pts 2000 pts SOLUCIONES 27. (Puntuación máxima: 3 Puntos) Una empresa fabrica dos tipos de colonia: A y B. La 1ª contiene un 15% de extracto de jazmín, un 20% de alcohol y el resto es agua, y la 2ª lleva un 30% de

Más detalles
Sitemap